

# UT TO SOUTH FORK FINAL MONITORING REPORT YEAR 3 2008

EEP Project # 435 Alamance County, North Carolina

# Submitted to:



NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699



# UT TO SOUTH FORK FINAL MONITORING REPORT YEAR 3 2008

EEP Project # 435 Alamance County, North Carolina

> Original Design Firm: ARCADIS G&M of North Carolina, Inc. 801 Corporate Center Drive, Suite 300 Raleigh, NC 27607



NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699 **Monitoring Firm:** 



1025 Wade Avenue Raleigh, NC 27605 Phone: (919) 789-9977 Project Manager: Phillip Todd ptodd@sepiengineering.com

## **Executive Summary**

The North Carolina Ecosystem Enhancement Program (EEP) restored the UT to South Fork in 2004. This project is located in the southern portion of Alamance County, NC. The different reaches flow through former pasture areas and wooded sections. Prior to restoration, cattle had unlimited access to the stream channels which created areas of severe bank erosion and loss of vegetation. Since the restoration has been completed, the livestock have been fenced out of the stream with the exception of a few crossings that are used throughout the year to move the cattle from one field to another.

There were several goals for this stream and buffer restoration project. Goals of the stream project included: reducing the bank erosion; reducing nutrient runoff on the site; stabilizing stream channel banks by planting vegetation; and, helping the stream reach its equilibrium though the proper design ratios for dimension, pattern, and profile.

Current monitoring for the site consists of evaluating both stream morphology and riparian vegetation for all three monitoring reaches. The stream monitoring included a longitudinal survey, cross section surveys, pebble counts, problem area identification, and photo documentation. A plan view featuring bankfull, edge of water, and thalweg lines as well as problem area locations was developed from the longitudinal survey. The vegetation assessment included a tally of planted vegetation in permanent vegetation plots, vegetation-specific problem area identification (i.e. bare areas and invasive species), and photo documentation. A vegetation problem area plan view was developed from the problem area identification. All morphological data, vegetation plot and pebble counts, cross section surveys, the longitudinal profile, and the plan view features were compared between monitoring years to assess project performance.

All Monitoring Year 3 profile and pattern parameters were consistent with Monitoring Year 2 values. Aggradation in riffle sections remains a problem in all monitoring subreaches. There is evidence that these areas are stabilizing in general as the riffles narrow to a stable state. The substrate coarsening trend observed at most cross sections is indicative of a clearing of fine sediments that may have been contributed to this aggradation. Several structures are failing in monitoring reaches 1 and 2. Several structures had water piping around stones. Several more structures had loose or displaced stones. In addition, several rootwads have some portion of bank caving in or piping behind the structure or around the footing. The most severe of these problem structures may warrant repair assessment. There were small amounts of bank erosion in all monitoring subreaches, but none were severe.

There was strong vegetative cover along the length of the project. Fescue has dominated the herbaceous understory of monitoring subreach 1, which appears to be preventing the establishment of the planted bare root trees. In Monitoring Year 3, several populations of exotic invasive species were noted. Invasive species found include: *Ligustrum sinense, Rosa multiflora, Microstegium virmineum, Typha latifolia,* and *Ailanthus altissima*. Planted stem survival in monitoring subreach 1 remains a concern. The overall planted stem survival from Monitoring Year 1 to Monitoring Year 3 was 75% among all vegetation plots. The overall planted stem density across all vegetation plots was 650 stems per acre.

## TABLE OF CONTENTS

| 1.0      | PROJE        | CT BAC           | KGROUND                                   | 1                       |
|----------|--------------|------------------|-------------------------------------------|-------------------------|
|          | 1.1          | Project          | Objectives                                |                         |
|          | 1.2          | Project          | Structure, Restoration Type, and Approach | l                       |
|          | 1.3          | Project          | Location and Setting                      | I<br>4                  |
| 2.0      |              | CT MON           | UTOPING METHODOLOGY                       |                         |
| 2.0      | 2 1          | Vegeta           | tion Methodology                          | 0<br>6                  |
|          | 2.1<br>2.2   | Stream           | Methodology                               | б                       |
|          | 2.2          | 2.2.1            | Longitudinal Profile and Plan View        |                         |
|          |              | 2.2.2            | Permanent Cross Sections                  |                         |
|          |              | 2.2.3            | Pebble Counts                             | 7                       |
|          | 2.3          | Photo I          | Documentation                             | 7                       |
| 3.0      | PROJE        | CT CON           | DITIONS AND MONITORING RESULTS            |                         |
|          | 3.1          | Vegeta           | tion Assessment                           |                         |
|          |              | 3.1.1            | Soils Data                                |                         |
|          |              | 3.1.2            | Vegetative Problem Area Plan View         |                         |
|          |              | 3.1.3            | Stem Counts                               |                         |
|          | 3.2          | Stream           | Assessment                                |                         |
|          |              | 3.2.1            | Longitudinal Profile and Plan View        |                         |
|          |              | 3.2.2            | Permanent Cross-Sections                  | 10                      |
|          |              | 3.2.3            | Pebble Counts                             |                         |
|          | 2.2          | 3.2.4<br>Dhoto I | Stream Problem Areas                      |                         |
| 4.0      | J.J<br>DECON | MEND             |                                           |                         |
| 4.0      | KECON        | VIIVIEND         | ATIONS AND CONCLUSIONS                    | 12                      |
| REFER    | ENCES.       |                  |                                           | 13                      |
|          |              |                  |                                           |                         |
| TABLI    | ES           |                  |                                           |                         |
| Table I  | Project I    | Restorati        | on Components                             | 1                       |
| Table I  | Project A    | Activity         | and Reporting History                     | 5                       |
| Table I  | II Project   | t Contact        | Table                                     | 5                       |
| Table I  | V Projec     | t Backgr         | ound Table                                | 6                       |
| Prelimi  | nary Soil    | Data Ta          | ble                                       |                         |
| Table V  | Verifica     | ation of l       | Bankfull Events                           |                         |
| Table V  | I BEHI       | and Sedi         | ment Export Estimates(not included in th  | is year's data)         |
| Table V  | II Categ     | orical St        | ream Feature Visual Stability Assessment  |                         |
| Table V  | III Base     | line Mor         | phology and Hydraulic Summary             | . Appendix B3           |
| Table L  | X. Morpl     | hology a         | nd Hydraulic Monitoring Summary           | . Appendix B3           |
| Table A  | 1 Stem c     | counts for       | r each species arranged by plot           | Appendix A1             |
| Table A  | 12 Vegeta    | ative Pro        | blem Areas                                | Appendix A1             |
|          | ST Stream    | 1 Problem        | 1 Areas                                   | Appendix B3             |
| Table B  | 2 Visual     | Morpho           | logical Stability Assessment              | Appendix B3             |
| FIGUR    | ES           |                  |                                           |                         |
| Figure   | 1 · Vicinit  | v Man            |                                           | 3                       |
| Figure   | 2. Project   | Reach N          |                                           | 4                       |
| Monito   | ring Plan    | View             | -mp                                       | Appendix C              |
| Vegetat  | ion Curre    | ent Cond         | itions Plan View                          | Appendix C              |
| Stream   | Current (    | Condition        | ns Plan View                              | Appendix C              |
|          |              |                  |                                           | - *                     |
| APPEN    | DICES        |                  |                                           |                         |
| Append   | lix A        |                  |                                           |                         |
| Append   | lix A1: V    | egetatior        | Data Tables                               |                         |
| Append   | lix A2: Pl   | hotolog -        | - Vegetation Problem Areas                | A2                      |
| UT to Se | outh Fork    |                  |                                           | SEPI Engineering Group  |
| EEP Pro  | ject Numb    | per 435          |                                           | Final Monitoring Report |
| February | / 2009       |                  |                                           | Monitoring Year 3 of 5  |

| Appendix A3: Photolog – Vegetation Plots                | A3 |
|---------------------------------------------------------|----|
| Appendix B                                              |    |
| Appendix B1: Photolog – Stream Problem Areas            | B1 |
| Appendix B2: Photolog – Cross Sections and Photo Points | B2 |
| Appendix B3: Stream Data Tables                         | B3 |
| Appendix B4: Stream Cross Sections                      | B4 |
| Appendix B5: Stream Longitudinal Profile                | B5 |
| Appendix B6: Stream Pebble Counts                       | B6 |

Appendix C: Plan View Sheets

## 1.0 PROJECT BACKGROUND

### 1.1 <u>Project Objectives</u>

The goal of this stream restoration project is to improve water quality in the Cape Fear River Basin. The UT to South Fork is typical of other streams in this area, exhibiting instability and degradation in response to current and historical land use practices. The goal of improving water quality will be accomplished by re-establishing a stable dimension, pattern, and profile to the stream. Stabilization of the streambed and banks will reduce the amount of sediment entering the river basin and re-establishment of a permanent vegetated riparian buffer (consisting of native species) will help decrease nutrient input. This buffer will provide shading for wildlife habitat within the stream and along the stream buffer.

### 1.2 **Project Structure, Restoration Type, and Approach**

All four restoration subreaches were classified as E4/1 type streams prior to restoration, and exhibited instability that was attributed to excessive cattle access and other current and past land-use practices. The restoration of restoration subreaches 1 and 2 involved channel relocation with adjusted dimension, pattern, and profile resulting in a Priority Level I approach. Restoration for subreach 3 most closely resembled a Priority II and III restoration approach while restoration for subreach 4 most closely resembled a Priority I and III restoration approach. Table I details the specific restoration components employed on each restoration reach.

|                                   | Table I. Project Restoration Components   UT to South Fork/EEP Project Number 435 |             |          |                     |                         |                                      |                      |  |  |  |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------|-------------|----------|---------------------|-------------------------|--------------------------------------|----------------------|--|--|--|--|--|--|
| Project<br>Segment or<br>Reach ID | Pre-Existing<br>Footage                                                           | Type        | Approach | As-Built<br>Footage | As-Built<br>Stationing* | Monitoring<br>Year 4<br>Stationing** | Comments             |  |  |  |  |  |  |
|                                   | ***                                                                               |             |          | 2,503               |                         | Reach 1 -                            |                      |  |  |  |  |  |  |
|                                   |                                                                                   |             |          |                     | 10+00 to                | 10+00 -                              | New channel          |  |  |  |  |  |  |
| Subreach 1                        |                                                                                   | Restoration | ΡI       |                     | 25+03                   | 20+57.63                             | construction         |  |  |  |  |  |  |
|                                   | ***                                                                               |             | ΡI,      | 810                 | 25+03 to                |                                      | Modified pattern,    |  |  |  |  |  |  |
| Subreach 2                        |                                                                                   | Restoration | PII      |                     | 33+13                   | Reach 2 -                            | dimension & profile  |  |  |  |  |  |  |
|                                   | ***                                                                               | Enhancement | P II. P  | 887                 | 33+13 to                | 10+00 -                              | Modified dimension & |  |  |  |  |  |  |
| Subreach 3                        |                                                                                   | Level I     | ÍII      |                     | 42+00                   | 20+33.78                             | profile              |  |  |  |  |  |  |
|                                   | ***                                                                               |             |          | 2,837               |                         | Reach 3 -                            |                      |  |  |  |  |  |  |
|                                   |                                                                                   |             | PI, P    |                     | 42+00-to                | 10+00 -                              | Modified pattern,    |  |  |  |  |  |  |
| Subreach 4                        |                                                                                   | Restoration | П        |                     | 70+37                   | 20+32.36                             | dimension & profile  |  |  |  |  |  |  |

\* – Determinations made from the Restoration Design Report for the project.

\*\* – For monitoring purposes Reach 1 is Design Subreach 1, Reach 2 combines portions of both Design Subreach 2 and Design Subreach 3, and Reach 3 is Design Subreach 4.

\*\*\* - Information unavailable to SEPI at this time.

## 1.3 <u>Project Location and Setting</u>

This project is near Snow Camp, North Carolina in south-central Alamance County. To reach the site from Raleigh, go west on US 64 towards Siler City. Take the exit for NC 87 and turn right, heading north. Take a left onto Chapel Hill-Greensboro Road. At the intersection with Lindley Mill Road take a

UT to South Fork EEP Project Number 435 February 2009 1

SEPI Engineering Group Final Monitoring Report Monitoring Year 3 of 5 left towards the community of Sutphin. The site is near the intersection with Green Hill Road before the Chatham County line. To access Reach 1, turn left onto Green Hill Road, you will cross the beginning of that reach. Reaches 2 and 3 can be accessed off of Lindley Mill Road. Figure 1 shows the location of the site and Figure 2 shows the location of each reach surveyed.

The project lies in a mostly open, abandoned agricultural field where cattle once had unlimited access to the stream. Since restoration, the stream has been fenced off, and cattle do not have access to the channel. The surrounding pastures are used for cattle grazing or crop production (hay). Less than 25% of the stream restoration area lies within a sparsely forested buffer area. The surrounding topography is gentle rolling hills.



UT to South Fork EEP Project Number 435 February 2009 SEPI Engineering Group Final Monitoring Report Monitoring Year 3 of 5



# 1.4 <u>History and Background</u>

Tables II, III, and IV provide the project history, contact information for the contractors on the project, and the project background/setting, respectively.

| Table II. Project Activity and Reporting History             |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|--|--|--|--|--|--|--|--|
| UT to South Fork/EEP Project Number 435                      |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |
| Activity or Report                                           | Scheduled<br>Completion                                                                                       | Actual Completion<br>or Delivery |                   |  |  |  |  |  |  |  |  |
| Restoration Plan                                             |                                                                                                               |                                  | September 2002    |  |  |  |  |  |  |  |  |
| Final Design - 90%                                           |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |
| Construction                                                 |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |
| Temporary S&E mix applies to<br>entire project area          |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |
| Permanent seed mix applies to reach/segments 1&2             | Additional raw data being acquired by EEP and will be included<br>in the 2009 monitoring report for the site. |                                  |                   |  |  |  |  |  |  |  |  |
| Containerized and B&B<br>plantings for reach/segments<br>1&2 |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |
| Mitigation Plan/ As-built (Year<br>0 Monitoring - baseline)  |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |
| Year 1 monitoring                                            | December 1, 2006                                                                                              | June 1, 2006                     | November 2006     |  |  |  |  |  |  |  |  |
| Year 2 monitoring                                            | December 1, 2007                                                                                              | October 2007                     | December 1, 2007  |  |  |  |  |  |  |  |  |
| Year 3 monitoring                                            | December 1, 2008                                                                                              | November 2008                    | November 15, 2008 |  |  |  |  |  |  |  |  |
| Year 4 monitoring                                            | December 1, 2009                                                                                              |                                  |                   |  |  |  |  |  |  |  |  |
| Year 5 monitoring                                            | December 1, 2010                                                                                              |                                  |                   |  |  |  |  |  |  |  |  |
| Year 5+ monitoring                                           |                                                                                                               |                                  |                   |  |  |  |  |  |  |  |  |

| Table III. Project Contact Table |                                       |  |  |  |  |  |  |
|----------------------------------|---------------------------------------|--|--|--|--|--|--|
| UT to South F                    | ork/EEP Project Number 445            |  |  |  |  |  |  |
| Designer                         | ARCADIS G&M                           |  |  |  |  |  |  |
|                                  | 801 Corporate Center Drive, Suite 300 |  |  |  |  |  |  |
|                                  | Raleigh, NC 27607                     |  |  |  |  |  |  |
| Construction Contractor          | *                                     |  |  |  |  |  |  |
| Planting Contractor              | *                                     |  |  |  |  |  |  |
| Seeding Contractor               | *                                     |  |  |  |  |  |  |
| 2006 – 2008 Monitoring           | SEPI Engineering Group                |  |  |  |  |  |  |
| Performers                       | 1025 Wade Avenue                      |  |  |  |  |  |  |
|                                  | Raleigh, NC 27607                     |  |  |  |  |  |  |
|                                  | Phillip Todd (919) 789-9977           |  |  |  |  |  |  |
| Stream Monitoring POC            | Ira Poplar-Jeffers (919) 789-9977     |  |  |  |  |  |  |
| Vegetation Monitoring POC        | Phil Beach (919) 789-9977             |  |  |  |  |  |  |
| Wetland Monitoring POC           | N/A                                   |  |  |  |  |  |  |

\*Raw data being acquired by EEP and will be included in the 2009 monitoring report.

| Table IV. Project Background Table                                 |                     |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|---------------------|--|--|--|--|--|--|--|--|
| UT to South Fork/EEP Projec                                        | et Number 445       |  |  |  |  |  |  |  |  |
| Project County                                                     | Alamance County, NC |  |  |  |  |  |  |  |  |
| Drainage impervious cover estimate (%)                             | 5                   |  |  |  |  |  |  |  |  |
| Stream Order                                                       | 1                   |  |  |  |  |  |  |  |  |
| Physiographic Region                                               | Piedmont            |  |  |  |  |  |  |  |  |
| Ecoregion                                                          | Carolina Slate Belt |  |  |  |  |  |  |  |  |
| Rosgen Classification of As-built                                  | Е                   |  |  |  |  |  |  |  |  |
| Cowardin Classification                                            | N/A                 |  |  |  |  |  |  |  |  |
|                                                                    | Georgeville-Heron-  |  |  |  |  |  |  |  |  |
| Dominant soil types                                                | Alamance & Orange-  |  |  |  |  |  |  |  |  |
|                                                                    | Efland-Herndon      |  |  |  |  |  |  |  |  |
| Reference site ID                                                  | UT Wells Creek &    |  |  |  |  |  |  |  |  |
| Reference site ID                                                  | UT Varnal Creek     |  |  |  |  |  |  |  |  |
| USGS HUC for Project and Reference                                 | 03030002 Haw River  |  |  |  |  |  |  |  |  |
| NCDWQ Sub-basin for Project and                                    | 03 04 06            |  |  |  |  |  |  |  |  |
| Reference                                                          | 03-04-00            |  |  |  |  |  |  |  |  |
| NCDWQ classification for Project and                               | C NSW               |  |  |  |  |  |  |  |  |
| Reference                                                          | C, 115 W            |  |  |  |  |  |  |  |  |
| Any portion of any project segment 303d                            | no                  |  |  |  |  |  |  |  |  |
| listed?                                                            | 110                 |  |  |  |  |  |  |  |  |
| Any portion of any project segment                                 | no                  |  |  |  |  |  |  |  |  |
| upstream of a 303d listed segment?                                 | 110                 |  |  |  |  |  |  |  |  |
| Reasons for 303d listing or stressor                               | N/A                 |  |  |  |  |  |  |  |  |
| % of project easement fenced                                       | 99                  |  |  |  |  |  |  |  |  |
| % of project easement demarcated with bollards (if fencing absent) | 0                   |  |  |  |  |  |  |  |  |

### 2.0 **PROJECT MONITORING METHODOLOGY**

### 2.1 <u>Vegetation Methodology</u>

For this monitoring project, a total of twelve (12) plots were studied. Plot sizes measure 10 meters by 10 meters (or equivalent to 100 square meters) depending on buffer width. The vegetation monitoring was not the Carolina Vegetation Survey (CVS) protocol, but was based on the number of stems for the targeted species that were planted for the stream restoration project. The planted material in the plot (previously marked with flagging) was identified by species and a tally of each species was kept and recorded in a field book. Any stems for a given species in a given plot that were not flagged and were counted over and above the baseline total were considered volunteers.

It should be noted that no initial planting documentation has ever been received by SEPI, so all survivability and density calculations are based on using the Monitoring Year 1 stem counts as a baseline. In Monitoring Year 1, SEPI project scientists used their best professional judgement to distinguish planted stems from volunteers.

### 2.2 <u>Stream Methodology</u>

The project monitoring for the stream channel included a longitudinal survey, cross-sectional surveys, pebble counts, problem area identification, and photo documentation. These measurements were taken at each reach. The stationing was based on thalweg. The methodology for each portion of the stream monitoring is described in detail below.

### 2.2.1 Longitudinal Profile and Plan View

A longitudinal profile was surveyed for each reach with a Nikon DTM-520 Total Station, prism, and a TDS Recon Pocket PC. The heads of features (i.e., riffles, runs, pools, and glides) were surveyed, as well as the point of maximum depth of each pool, boundaries of problem areas, and any other significant slope-breaks or points of interest. At the head of each feature and at the maximum pool depth, thalweg, water surface, edge of water, left and right bankfull, and left and right top of bank (if different than bankfull) were surveyed. All profile measurements were extracted from this survey, including channel and valley length and length of each feature, water surface slope for each reach and feature, bankfull slope for the reach, and pool spacing. This survey also was used to draw plan view figures with Microstation v8 (Bentley Systems, Inc., Exton, PA) for each reach, and all pattern measurements (i.e. meander length, radius of curvature, belt width, meander width ratio, and sinuosity) were extracted from the plan view. Stationing was calculated along the thalweg.

### 2.2.2 Permanent Cross Sections

Four permanent cross sections (two riffles and two pools) were surveyed at Reach 1. Two permanent cross sections (one riffle and one pool) were surveyed at Reach 2, and six permanent cross sections (3 riffles and 3 pools) were surveyed at Reach 3. The beginning and end of each permanent cross section were originally marked with a wooden stake and metal conduit. Cross sections were installed perpendicular to the stream flow. Each survey noted all changes in slope, tops of both banks, left and right bankfull, edges of water, thalweg, and water surface. The cross sections were then plotted and overlain on the cross section surveys from all previous monitoring years. All dimension measurements (i.e. bankfull width, floodprone width, bankfull mean depth, cross sectional area, width-to-depth ratio, entrenchment ratio, bank height ratio, wetted perimeter, and hydraulic radius) were extracted from these plots and compared to data from all previous monitoring years.

### 2.2.3 *Pebble Counts*

A modified Wolman pebble count (Rosgen 1994), consisting of 50 samples, was conducted at each permanent cross section. The cumulative percentages were graphed, and the D50 and D84 particle sizes were calculated and compared to data from all previous monitoring years.

### 2.3 Photo Documentation

Permanent photo points were established during Monitoring Year 1. A set of three photographs (facing upstream, facing downstream, and facing the channel) were taken at each photo point with a digital camera. Two photographs were taken at each cross-section (facing upstream and downstream). A representative photograph of each vegetation plot was taken at the designated corner of the vegetation plot and in the same direction as the Monitoring Year 1 photograph. An arrow was placed on the designated corner of each vegetation plot on the plan view sheets to document the corner and direction of each photograph. Photos were also taken of all significant stream and vegetation problem areas.

#### 3.0 PROJECT CONDITION AND MONITORNING RESULTS

#### 3.1 Vegetation Assessment

### 3.1.1 Soils Data

| Preliminary Soil Data |             |                                                                     |             |               |           |  |  |  |  |  |  |  |
|-----------------------|-------------|---------------------------------------------------------------------|-------------|---------------|-----------|--|--|--|--|--|--|--|
| Series                | Max         | Max % Clay on K                                                     |             | Т             | OM %      |  |  |  |  |  |  |  |
|                       | Depth (in.) | Surface                                                             |             |               |           |  |  |  |  |  |  |  |
| Chewacla (Cd)         | 80          | 5.0 - 20.0                                                          | 0.48        | *             | 1.0 - 4.0 |  |  |  |  |  |  |  |
| Efland (EaB2)         | 86          | <<<<<< Information unavailable >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |             |               |           |  |  |  |  |  |  |  |
| Georgeville (GaB2)    | 63          | 5.0 - 27.0                                                          | 0.48        | *             | 0.5 - 2.0 |  |  |  |  |  |  |  |
| Georgeville (GbD3)    | 63          | 27.0 - 35.0                                                         | 0.35        | *             | 0.5 - 2.0 |  |  |  |  |  |  |  |
| Herndon (HdB2)        | 68          | 5.0 - 27.0                                                          | 0.48        | *             | 0.5 - 1.0 |  |  |  |  |  |  |  |
| Local Alluvial (Lc)   |             | <<<<<                                                               | High variab | ility of data | >>>>>>    |  |  |  |  |  |  |  |
| Orange (ObB2)         | 55          | 10.0 - 27.0                                                         | 0.44        | *             | 1.0 - 3.0 |  |  |  |  |  |  |  |
| Orange (ObC2)         | 55          | 10.0 - 27.0                                                         | 0.44        | *             | 1.0 - 3.0 |  |  |  |  |  |  |  |

\* The soils information was not available from the Natural Resources Conservation Service (NRCS)

#### 3.1.2 Vegetative Problem Area Plan View

Overall, there was strong vegetative cover along the length of the project. Fescue has dominated the herbaceous understory of Monitoring Reach 1, which may be preventing the establishment of the planted stems. This fescue dominance was particularly noted in Vegetation plot (VP) #2 where no woody stems were noted. Vegetation plot #1 had only 3 green ash (*Fraxinis pennsylvanica*) individuals and VP #4 had only a single green ash and five red maple (*Acer rubrum*) stems. In addition, fewer new volunteers were noted in Monitoring Reach 1 during Monitoring Year 3 than in subreach 2 or 3 plots. The vegetation plots and problem areas are shown on the plan view sheets in Appendix C.

In Monitoring Year 3, several populations of exotic invasive species were noted. Chinese privet (*Ligustrum sinense*) and multiflora rose (*Rosa multiflora*) were found in various areas along all three Monitoring Reaches. Japanese stilt grass (*Microstegium virmineum*) was identified at two locations along Monitoring Reach 1, an area at Station 14+27 and one at Station 19+83. Tree of heaven was identified at one location along Monitoring Reach 2 (Station 15+52) and was found at several locations long Monitoring Reach 3 (see Table VI in Appendix A3). In addition, Japanese honeysuckle (*Lonicera japonica*), although not considered to be a major problem, was noted in most of the vegetation plots. Although not considered a 'problem,' it should be noted that cattails, which are sometimes invasive, were noted along all three monitoring reaches, most prominently at Monitoring Reaches 2 and 3.

#### 3.1.3 Stem Counts

Planted stems in Monitoring Reach 1 remain a concern. No stems were located in VP #2, presumably due to *Festuca spp.* dominance. Planted stem densities in all Monitoring Reach 1 vegetation plots (VP #1 through #4) are already below the Monitoring Year 5 goal of 260 stems per acre. In addition, VP# 5 (Monitoring Reach 2) also dropped below the Monitoring Year 5 goal this year. The rest of the vegetation plots are well above the Monitoring Year 5 goal.

The overall planted stem survival from Monitoring Year 1 to Year 3 was 75% among all vegetation plots. The overall planted stem density across all vegetation plots was 650 stems per acre.

It should be noted that there were several species for which additional stems were counted for a given species within a given plot relative to the Monitoring Year 2 count. These additional stems were assumed

to be volunteers and were not included in the survival calculations. The volunteer species were *Cornus* ammonum, Acer negundo, Acer rubrum, Betula nigra, Liquidambar styraciflua, Quercus sp., Quercus alba, Diospyros virginiana, Sambucus canandensis, Ulmus americana, Carya sp., Pinus taeda, Cercis canadensis, Ligustrum sinense, and Ailanthus altissima. In addition, Liquidambar styraciflua were too numerous to count where volunteers were noted.

# 3.2 <u>Stream Assessment</u>

Considering the 5 year timeframe of standard mitigation monitoring, restored streams should demonstrate morphologic stability in order to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is to also be expected. However, the observed change should not indicate a high rate or be unidirectional over time such that a robust trend is evident. If some trend is evident, it should be very modest or indicate migration to another stable form. Examples of the latter include depositional processes resulting in the development of constructive features on the banks and floodplain, such as an inner berm, slight channel narrowing, modest natural levees, and general floodplain deposition. Annual variation is to be expected, but over time this should demonstrate maintenance around some acceptable central tendency while also demonstrating consistency or a reduction in the amplitude of variation. Lastly, all of this must be evaluated in the context of hydrologic events to which the system is exposed over the monitoring period.

For channel dimension, cross-sectional overlays and key parameters such as cross-sectional area and the channel's width to depth ratio should demonstrate modest overall change and patterns of variation that are in keeping with above. For the channels' profile, the reach under assessment should not demonstrate any consistent trends in thalweg aggradation or degradation over any significant continuous portion of its length. Over the monitoring period, the profile should also demonstrate the maintenance or development of bedform (facets) more in keeping with reference level diversity and distributions for the stream type in question. It should also provide a meaningful contrast in terms of bedform diversity against the pre-existing condition. Bedform distributions, riffle/pool lengths and slopes will vary, but should do so with maintenance around design/As-built distributions. This requires that the majority of pools are maintained at greater depths with lower water surface slopes and riffles are shallow with greater water surface slopes. Substrate measurements should indicate the progression towards, or the maintenance of, the known distributions from the design phase.

In addition to these geomorphic criteria, a minimum of two bankfull events must be documented during separate monitoring years within the five year monitoring period for the monitoring to be considered complete. Table VIII documents all bankfull events recorded since the start of Monitoring Year 1.

|                               |                                 | Table V. Verification of Bankfull Events                                                                                                                                                        |                                    |
|-------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Date of<br>Data<br>Collection | Likely Date<br>of<br>Occurrence | Method                                                                                                                                                                                          | Photo # (if<br>available)          |
| 1/9/2007                      | Unknown                         | Crest Stage Gauge measurement of approximately 7 inches on stick (bottom of gauge at bkf).                                                                                                      | no photo                           |
| 4/5/2007                      | Unknown                         | Crest Stage Gauge measurement of 16" (bottom of gauge 12" below bkf).                                                                                                                           | no photo                           |
| 6/4/2007                      | 6/3/2007                        | Result of an approximate 1.5 inch rain event. Wrack lines observed.                                                                                                                             | no photo                           |
| 2/27/2008                     | 1/20/2008                       | Crest gauge reading of 28 inches over bankfull (located at 15-20 inches on gauge). Also wrack lines observed above bankfull elevation.                                                          | no photo                           |
| 3/17/2008                     | 3/5/2008                        | Wrack line from bankfull event observed above bankfull.                                                                                                                                         | Photo 4 in<br>SR-3 SPA<br>Photolog |
| 9/1/2008                      | 8/27/2008 -<br>8/28/2008        | According to NCDC Station Coop ID 313555 - Graham ENE, NC,<br>6.58 inches of precipitation fell on this day. It was assumed, but not<br>verified, that this rainfall produced a bankfull event. | no photo                           |

### 3.2.1 Longitudinal Profile and Plan View

All Monitoring Year 3 profile and pattern parameters listed in Table XIII (Appendix B3) are consistent with values from Monitoring Year 2.

### 3.2.2 Permanent Cross Sections

All cross sections overlay nicely and have remained consistent between Monitoring Years 2 and 3. No cross sections have specific problem areas associated with them. However, there is a bank erosion (right) located just downstream of cross section #2 and a bank erosion (right) located just downstream of cross section #4 on Monitoring Reach 1. This erosion has not affected the dimension of these cross sections, but the area should be observed closely during future monitoring years to track any changes. All cross-section graphs are located in Appendix B.

### 3.2.3 Pebble Counts

Pebble counts for Monitoring Reach 1 generally show a slight coarsening of the substrate (i.e. lower percentage of silt/clay particles), with the exception of the cross section #3 count, which remained consistent with the Monitoring Year 2 count. Pebble counts for Monitoring Reach 2 show the same trend that was observed in Monitoring Reach 1 (i.e., general coarsening of the substrate due to a lower percentage of silt/clay particles). Monitoring Reach 3 pebble counts show the same trend observed in Monitoring Reaches 1 and 2 (i.e., general coarsening of the substrate due to a lower percentage of silt/clay particles), with the exception of cross sections #8 and #10. Cross section #8 was consistent with the Monitoring Year 2 count (i.e., approximately 60% silt/clay), as was cross section #10. However, cross section #10 did not have a fining problem in Monitoring Year 2 and continues to have a good distribution of sediment size classes. The best explanation for this general substrate coarsening trend observed at all three Monitoring Reaches is the increased frequency of high flow events in 2008 that probably flushed some of these fines downstream.

#### 3.2.4 Stream Problem Areas

Aggradation/bar formation in riffle sections remains fairly prominent in all three monitoring reaches, however the trend appears to be that these areas are clearing in the thalweg, creating inner-berm features. Therefore, this aggradation may not be a problem as the stream appears to be narrowing to a stable dimension where it appears the riffle sections were built too wide. Evidence for the notion that riffles along this project were built too wide is found in the observation that the old aggradation (i.e. sediment deposition) that was building in the riffles in many areas is clearing withing the thalweg, but building up along the channel edges and becoming permanent with vegetation taking root, essentially forming innerberm features along the riffles and leaving the riffles with a more stable low flow dimension that is better able to transport sediment. Further evidence that these aggradational areas may be stabilizing is the general trend (with a few exceptions) across the entire restoration site of a coarsending of the streambed substrate, indicative of the clearing of fine sediment deposition in most areas in Monitoring Year 3. There is some bank erosion in all reaches (e.g., Station 18+26 on Monitoring Reach 1, Station 11+28 on Monitoring Reach 2, and Station 19+30 on Monitoring Reach 3), but there are no areas of severe status, and many areas appear to be healing over. In general the bank conditions of all three reaches was consistent with that of Monitoring Year 2. Many of the stone in-stream structures (i.e. crossvanes and jhooks) in Monitoring Reaches 1 and 2 have water piping around or under the structure and/or have stones that are loose or have already been displaced (e.g., j-hook at Station 14+92 on Monitoring Reach 1 and a crossvane at Station 20+34 on Monitoring Reach 2). Several of these structures may warrant a repair assessment. In addition, several rootwads on Monitoring Reaches 1 and 2 have problems with the soil caving in behind the structure or around the footing (e.g., Station 15+55 on Monitoring Reach 1 and Station 15+07 on Monitoring Reach 2). In some cases, this instability may just be the result of the ground settling after installation, but in several cases it appears that there is water piping through the structure at certain times, which is a more serious problem. The structures in Reach 3 appear stable overall. Problem areas that were observed in the field are marked on the plan sheets in Appendix B. The stream problem areas table is located in Appendix B and describes the problem areas, station numbers, and respective probable causes.

| Table VII a. Categorical Stream Feature Visual Stability Assessment |      |     |     |      |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|------|-----|-----|------|--|--|--|--|--|--|--|--|
| UT to South Fork                                                    |      |     |     |      |  |  |  |  |  |  |  |  |
| Segment/Reach: 1 (1140 linear feet)                                 |      |     |     |      |  |  |  |  |  |  |  |  |
| FeatureInitialMY-01MY-02MY-03MY-04MY-05                             |      |     |     |      |  |  |  |  |  |  |  |  |
| A. Riffles                                                          | 100% | 80% | 71% | 63%  |  |  |  |  |  |  |  |  |
| B. Pools                                                            | 100% | 80% | 90% | 87%  |  |  |  |  |  |  |  |  |
| C. Thalweg                                                          | 100% | 85% | 88% | 100% |  |  |  |  |  |  |  |  |
| D. Meanders                                                         | 100% | 87% | 87% | 73%  |  |  |  |  |  |  |  |  |
| E. Bed General                                                      | 100% | 92% | 87% | 88%  |  |  |  |  |  |  |  |  |
| F. Bank Condition                                                   | 100% | 98% | 98% | 98%  |  |  |  |  |  |  |  |  |
| G. Vanes / J Hooks etc.                                             | 100% | 58% | 91% | 90%  |  |  |  |  |  |  |  |  |
| H. Wads and Boulders                                                | 100% | 50% | 56% | 69%  |  |  |  |  |  |  |  |  |

| Table VII b. Categorical Stream Feature Visual Stability Assessment |         |       |       |       |       |       |  |  |  |  |  |  |
|---------------------------------------------------------------------|---------|-------|-------|-------|-------|-------|--|--|--|--|--|--|
| UT to South Fork                                                    |         |       |       |       |       |       |  |  |  |  |  |  |
| Segment/Reach: 2 (1022 linear feet)                                 |         |       |       |       |       |       |  |  |  |  |  |  |
| Feature                                                             | Initial | MY-01 | MY-02 | MY-03 | MY-04 | MY-05 |  |  |  |  |  |  |
| A. Riffles                                                          | 100%    | 91%   | 83%   | 77%   |       |       |  |  |  |  |  |  |
| B. Pools                                                            | 100%    | 90%   | 100%  | 88%   |       |       |  |  |  |  |  |  |
| C. Thalweg                                                          | 100%    | 94%   | 93%   | 94%   |       |       |  |  |  |  |  |  |
| D. Meanders                                                         | 100%    | 79%   | 98%   | 82%   |       |       |  |  |  |  |  |  |
| E. Bed General                                                      | 100%    | 87%   | 82%   | 93%   |       |       |  |  |  |  |  |  |
| F. Bank Condition                                                   | 100%    | 98%   | 99%   | 99%   |       |       |  |  |  |  |  |  |
| G. Vanes / J Hooks etc.                                             | 100%    | 71%   | 97%   | 97%   |       |       |  |  |  |  |  |  |
| H. Wads and Boulders                                                | 100%    | 27%   | 77%   | 77%   |       |       |  |  |  |  |  |  |

| Table VII c. Categorical Stream Feature Visual Stability Assessment |         |       |       |       |       |       |  |  |  |  |  |  |
|---------------------------------------------------------------------|---------|-------|-------|-------|-------|-------|--|--|--|--|--|--|
| UT to South Fork                                                    |         |       |       |       |       |       |  |  |  |  |  |  |
| Segment/Reach: 3 (1024 linear feet)                                 |         |       |       |       |       |       |  |  |  |  |  |  |
| Feature                                                             | Initial | MY-01 | MY-02 | MY-03 | MY-04 | MY-05 |  |  |  |  |  |  |
| A. Riffles                                                          | 100%    | 90%   | 84%   | 93%   |       |       |  |  |  |  |  |  |
| B. Pools                                                            | 100%    | 91%   | 88%   | 82%   |       |       |  |  |  |  |  |  |
| C. Thalweg                                                          | 100%    | 88%   | 100%  | 100%  |       |       |  |  |  |  |  |  |
| D. Meanders                                                         | 100%    | 75%   | 97%   | 72%   |       |       |  |  |  |  |  |  |
| E. Bed General                                                      | 100%    | 89%   | 90%   | 98%   |       |       |  |  |  |  |  |  |
| F. Bank Condition                                                   | 100%    | 93%   | 98%   | 98%   |       |       |  |  |  |  |  |  |
| G. Vanes / J Hooks etc.                                             | 100%    | 100%  | 100%  | 98%   |       |       |  |  |  |  |  |  |
| H. Wads and Boulders                                                | 100%    | 90%   | 100%  | 100%  |       |       |  |  |  |  |  |  |

### 3.3 Photo Documentation

Photos taken of the vegetation problem areas and photos of the vegetation plots are in Appendix A. Stream problem area photographs are provided in Appendix B. The photographs taken at the marked photo point locations and at the cross-sections are provided in Appendix B.

### 4.0 **RECOMMENDATIONS AND CONCLUSIONS**

All Monitoring Year 3 profile and pattern parameters listed in Table XIII (Appendix B3) were consistent with Monitoring Year 2 values. Aggradation in riffle sections remains a problem in all Monitoring Reaches. However, there is evidence that these areas are stabilizing in general as the riffles narrow to a stable state. The substrate coarsening trend observed at most cross sections is indicative of a clearing of fine sediments that may have been contributing to this aggradation. There are several problem areas, especially in Monitoring Reaches 1 and 2, where structures are failing. Several structures had water flowing piping around stones. Several more structures had loose or displaced stones. In addition, several rootwads of Monitoring Reaches 1 and 2 have some portion of bank caving in or piping behind the structure or around the footing. Repair assessment may be warranted on these reaches. There were small amounts of bank erosion in all Monitoring Reaches, but none were severe. In general, bank erosion impacted a low percentage of all reaches and is not a serious concern at this time.

Overall, there was strong vegetative cover along the length of the project. Fescue has dominated the herbaceous understory of Monitoring Reach 1, which may be preventing the establishment of the planted

SEPI Engineering Group Final Monitoring Report Monitoring Year 3 of 5 bare root trees. Various populations of invasive species were discovered in Monitoring Year 3 at all three Monitoring Reaches that were apparently overlooked in previous monitoring years. Species found include: *Ligustrum sinense, Rosa multiflora, Microstegium virmineum, Typha latifolia,* and *Ailanthus altissima*. Planted stem survival in Monitoring Reach 1 remains a concern. No stems were located in VP #2, presumably due to *Festuca spp.* dominance. Planted stem densities in all Monitoring Reach 1 vegetation plots (VP #1 through #4) are already below the Monitoring Year 5 goal of 260 stems per acre. In addition, VP# 5 (Monitoring Reach 2) also dropped below the Monitoring Year 5 goal this year. The rest of the vegetation plots are well above the Monitoring Year 5 goal. The overall 'planted' stem survival from Monitoring Year 1 to Year 3 was 75% among all vegetation plots. The overall 'planted' stem density across all vegetation plots was 650 stems per acre.

## REFERENCES

- ARCADIS G&M of North Carolina, Inc (ARCADIS). September 2002. Restoration Design Report, Unnamed Tributary to South Fork.
- DeLorme. 1997. The North Carolina Atlas and Gazateer.
- Harman, W.H., et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. AWRA Wildland Hydrology Symposium Proceedings. Edited by D.S. Olson and J.P. Potyondy. AWRA Summer Synposium. Bozeman, MT.
- North Carolina Ecosystem Enhancement Program. November 2006. Content, Format and Data Requirements for EEP Monitoring Reports.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22: 166-169.

SEPI Engineering Group. 2006. UT to South Fork Final Monitoring Report, Year 1 of 5.

SEPI Engineering Group. 2007. UT to South Fork Final Monitoring Report, Year 2 of 5.

- U.S. Department of Agriculture, Soil Conversation Service. April 1960. Soil Survey Alamance County, North Carolina.
- U.S. Department of Army, Corps of Engineers. 2003. *Stream Mitigation Guidelines*. <u>http://www.saw.usace.army.mil/wetlands/Mitigation/stream\_mitigation.html</u>

# APPENDIX A1

# **VEGETATION DATA TABLES**

|                            |       |   | Ta  | ble A1 | . Sten | n counts f | for each | specie | es arrange | ed by plot | for UT S | South Fo | rk        |           |           |            |
|----------------------------|-------|---|-----|--------|--------|------------|----------|--------|------------|------------|----------|----------|-----------|-----------|-----------|------------|
| Species                    | Plots |   |     |        |        |            |          |        |            |            |          |          | Year 1    | Year 2    | Year 3    | Survival % |
|                            | 1     | 2 | 3   | 4      | 5      | 6          | 7        | 8      | 9          | 10         | 11       | 12       | Totals    | Totals    | Totals    |            |
| Shrubs                     |       |   |     |        |        |            |          |        |            |            |          |          |           |           |           |            |
| Cornus ammomum             |       |   |     |        |        | (LS 15)    |          |        | (LS 1)     | 2 (LS 5)   | (LS 5)   | (LS 5)   | 3 (LS 31) | 3 (LS 31) | 2 (LS 31) | 97.1%      |
| Salix nigra                |       |   |     |        |        |            |          |        |            |            |          |          | 1         | 1         | 0         | 0.0%       |
| -                          |       |   |     |        |        |            |          |        |            |            |          |          |           |           |           |            |
| Trees                      |       |   |     |        |        |            |          |        |            |            |          |          |           |           |           |            |
| Acer negundo               |       |   |     |        |        |            |          |        |            |            | 1        |          | 1         | 1         | 1         | 100.0%     |
| Acer rubrum                |       |   |     | 5      |        |            | 1        |        |            |            |          |          | 7         | 6         | 6         | 85.7%      |
| Betula nigra               |       |   |     |        |        |            | 2        | 2      | 1          | 11         | 3        | 8        | 31        | 27        | 27        | 87.1%      |
| Carpinus caroliniana       |       |   |     |        |        |            |          |        |            |            |          |          | 2         | 0         | 0         | 0.0%       |
| Diospyros virginiana       |       |   |     |        |        | 1          | 5        | 3      | 0          | 3          | 1        | 0        | 18        | 16        | 13        | 72.2%      |
| Fraxinis pennsylvanica     | 3     |   | 3   | 1      | 3      |            | 8        | 10     | 10         | 16         | 2        | 3        | 70        | 63        | 59        | 84.3%      |
| Symphoricarpos orbiculatus |       |   | 3   |        |        |            |          |        |            | 1          |          |          | 4         | 4         | 4         | 100.0%     |
| Juglans nigra              |       |   |     |        |        |            |          |        | 2          | 1          |          | 2        | 27        | 8         | 5         | 18.5%      |
| Platanus occidentalis      |       |   |     |        |        | 10         | 13       | 1      | 1          |            | 2        | 3        | 32        | 30        | 30        | 93.8%      |
| Sambucus canandensis       |       |   |     |        | 2      |            |          |        |            |            |          |          | 5         | 2         | 2         | 40.0%      |
| Quercus michauxii          |       |   |     |        |        |            |          |        | 1          | 5          | 2        | 2        | 14        | 10        | 10        | 71.4%      |
| Quercus sp.                |       |   |     |        |        |            | 1        |        |            |            |          |          | 1         | 1         | 1         | 100.0%     |
| Quercus alba               |       |   |     |        |        |            |          | 5      |            |            |          |          | 10        | 7         | 5         | 50.0%      |
| Ulmus americana            |       |   |     |        |        |            | 1        |        |            |            | 1        |          | 3         | 2         | 2         | 66.7%      |
|                            |       |   |     |        |        |            |          |        |            |            |          |          |           |           |           |            |
| Total including live stake | 3     | 0 | 6   | 6      | 5      | 26         | 31       | 21     | 16         | 44         | 17       | 23       | 260       | 212       | 195       | 75.0%      |
| Stems per acre             | 120   | 0 | 240 | 240    | 200    | 1040       | 1240     | 840    | 640        | 1760       | 680      | 920      | 867       | 707       | 650       |            |
| Total excluding live stake | 3     | 0 | 6   | 6      | 5      | 11         | 31       | 21     | 15         | 39         | 12       | 18       | 229       | 181       | 164       | 71.6%      |
| Stems per acre             | 120   | 0 | 240 | 240    | 200    | 440        | 1240     | 840    | 600        | 1560       | 480      | 720      | 763       | 603       | 547       |            |

\*Volunteers of the following species, not initially recorded as planted, were counted: Cornus ammomum, Acer negundo, Acer rubrum, Betula nigra, Fraxinis pennsylvanica, Quercus michauxii, Juglans nigra, Platanus occidentalis, Baccharis halimifolia, Symphoricarpos orbiculatus, Celtis laevigata, Liquidambar styraciflua, Quercus sp., Quercus alba, Diospyros virginiana, Sambucus canandensis, Ulmus americana, Carya sp., Pinus taeda, Cercis canadensis, Ligustrum sinense, and Ailanthus altissima.

\*Liquidambar styraciflua were too numerous to count where new volunteers were noted.

| Table A2.   Vegetative Problem Areas               |                      |                                              |         |  |  |
|----------------------------------------------------|----------------------|----------------------------------------------|---------|--|--|
| Feature/Issue                                      | Station # / Range    | Probable Cause                               | Photo # |  |  |
| Stream Reach 1                                     |                      |                                              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR1 - 10+00          | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora (Right Bank)                       | SR1 - 11+25          | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora (Left Bank)                        | SR1 - 13+54          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR1 - 13+56          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR1 - 14+17 to 14+58 | Invasive vegetative opportunism              |         |  |  |
| Microstegium virmineum (Both Banks)                | SR1 - 14+27 to 14+39 | Invasive vegetative opportunism              | Photo 1 |  |  |
| Rosa multiflora (Left Bank)                        | SR1 - 14+36          | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora (Left Bank)                        | SR1 - 16+71          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR1 - 18+40          | Invasive vegetative opportunism              |         |  |  |
| Bare Bench/Bank                                    | SR1 - 18+61 to 18+66 | Lack of vegetation/erodible soil texture     | Photo 2 |  |  |
| Microstegium virmineum (Left Bank)                 | SR1 - 19+83 to 20+09 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR1 - 19+80          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR1 - 20+09 to 20+24 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR1 - 20+46          | Invasive vegetative opportunism              |         |  |  |
| Festuca spp.                                       | SR1 - entire reach   | Invasive vegetative opportunism - Fescue has | Photo 1 |  |  |
|                                                    |                      | dominated most of the herbaceous understory. |         |  |  |
| Stream Reach 2                                     |                      |                                              |         |  |  |
| Rosa multiflora (Left Bank)                        | SR2 - 10+04 to 14+29 | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora and Ligustrum sinense (Left Bank)  | SR2 - 10+51 to 14+08 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR2 - 10+68 10+94    | Invasive vegetative opportunism              | Photo 1 |  |  |
| Rosa multiflora (Right Bank)                       | SR2 - 11+30 to 11+41 | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora (Left Bank)                        | SR2 - 11+17 to 11+71 | Invasive vegetative opportunism              | Photo 3 |  |  |
| Ligustrum sinense (Right Bank)                     | SR2 - 12+10          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR2 - 13+03          | Invasive vegetative opportunism              |         |  |  |
| Bare Bench/Bank (Right)                            | SR2 -13+09 13+43     | Lack of vegetation/erodible soil texture     |         |  |  |
| Rosa multiflora and Ligustrum sinense (Right Bank) | SR2 - 13+51 15+03    | Invasive vegetative opportunism              |         |  |  |
| Bare Bench/Bank (Right)                            | SR2 - 13+65 to 15+83 | Lack of vegetation/erodible soil texture     |         |  |  |
| Rosa multiflora (Left Bank)                        | SR2 - 14+29          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR2 - 14+29 14+80    | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora (Left Bank)                        | SR2 - 14+70          | Invasive vegetative opportunism              |         |  |  |
| Ailanthus altissima (Left Bank)                    | SR2 - 15+52          | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora and Ligustrum sinense (Right Bank) | SR2 - 15+86 to 17+16 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR2 - 15+63 to 16+39 | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora and Ligustrum sinense (Left Bank)  | SR2 - 16+73 to 17+42 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR2 - 17+11 to 17+18 | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora (Right Bank)                       | SR2 - 18+00 to 18+05 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR2 - 18+13 to 19+08 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR2 - 18+33          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR2 - 18+39 to 18+47 | Invasive vegetative opportunism              |         |  |  |
| Rosa multiflora and Ligustrum sinense (Right Bank) | SR2 - 18+83 to 19+19 | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR2 - 19+76          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR2 - 19+84          | Invasive vegetative opportunism              |         |  |  |
| Ligustrum sinense (Left Bank)                      | SR2 - 19+84 to 20+33 | Invasive vegetative opportunism              |         |  |  |
| Stream Reach 3                                     | -                    |                                              |         |  |  |
| Ligustrum sinense (Right Bank)                     | SR3 - 10+17 to 10+33 | Invasive vegetative opportunism              |         |  |  |
| Liquetrum sinones (Laft Dank)                      | SP2 11:22 to 11:48   | Investive vegetative opportunism             |         |  |  |

| Ligustrum sinense (Right Bank)                        | SR3 - 10+17 to 10+33 | Invasive vegetative opportunism             |         |
|-------------------------------------------------------|----------------------|---------------------------------------------|---------|
| Ligustrum sinense (Left Bank)                         | SR3 - 11+22 to 11+48 | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Left Bank)                         | SR3 - 11+61 to 11+74 | Invasive vegetative opportunism             |         |
| Rosa multiflora (Left Bank)                           | SR3 - 12+00 to 12+08 | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Left Bank)                         | SR3 - 11+84 to 14+79 | Invasive vegetative opportunism             |         |
| Rosa multiflora (Left Bank)                           | SR3 - 12+78 to 12+80 | Invasive vegetative opportunism             |         |
| Rosa multiflora (Left Bank)                           | SR3 - 12+80          | Invasive vegetative opportunism             |         |
| Rosa multiflora (Right Bank)                          | SR3 - 13+88 to 14+01 | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Right Bank)                        | SR3 - 14+21 to 14+27 | Invasive vegetative opportunism             | Photo 2 |
| Ligustrum sinense (Right Bank)                        | SR3 - 14+8 to8 14+98 | Invasive vegetative opportunism             |         |
| Rosa multiflora (Right Bank)                          | SR3 - 15+00          | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Right Bank)                        | SR3 - 15+02 to 15+10 | Invasive vegetative opportunism             |         |
| Ailanthus altissima and Ligustrum sinense (Left Bank) | SR3 - 14+78 to 17+37 | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Right Bank)                        | SR3 - 15+59          | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Right Bank)                        | SR3 - 15+69          | Invasive vegetative opportunism             |         |
| Rosa multiflora (Right Bank)                          | SR3 - 15+94          | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Left Bank)                         | SR3 - 16+21          | Invasive vegetative opportunism             |         |
| Typha latifolia                                       | SR3 - 15+96 to 16+36 | Aggradation/Invasive vegetative opportunism |         |
| Ailanthus altissima (Right Bank)                      | SR3 - 15+72 to 16+47 | Invasive vegetative opportunism             |         |
| Ailanthus altissima (Left Bank)                       | SR3 - 16+34 to 16+45 | Invasive vegetative opportunism             |         |
| Bare Bench/Bank (Left)                                | SR3 - 16+40          | Lack of vegetation/erodible soil texture    | Photo 3 |
| Ailanthus altissima and Ligustrum sinense (Left Bank) | SR3 - 17+50 to 19+55 | Invasive vegetative opportunism             |         |
| Ailanthus altissima (Right Bank)                      | SR3 - 17+33          | Invasive vegetative opportunism             |         |
| Rosa multiflora (Right Bank)                          | SR3 - 17+86 to 17+92 | Invasive vegetative opportunism             |         |
| Rosa multiflora (Right Bank)                          | SR3 - 18+00          | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Right Bank)                        | SR3 - 18+20 to 18+53 | Invasive vegetative opportunism             |         |
| Rosa multiflora (Right Bank)                          | SR3 - 18+26 to 18+47 | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Right Bank)                        | SR3 - 18+58 to 18+64 | Invasive vegetative opportunism             |         |
| Rosa multiflora (Left Bank)                           | SR3 - 18+79 to 18+94 | Invasive vegetative opportunism             |         |
| Ligustrum sinense (Right Bank)                        | SR3 - 18+88          | Invasive vegetative opportunism             |         |
| Ailanthus altissima (Right Bank)                      | SR3 - 19+14 to 20+05 | Invasive vegetative opportunism             | Photo 4 |
| Rosa multiflora (Right Bank)                          | SR3 - 19+87          | Invasive vegetative opportunism             |         |
| Rosa multiflora (Left Bank)                           | SR3 - 19+68 to 20+22 | Invasive vegetative opportunism             |         |

# APPENDIX A2

# PHOTOLOG VEGETATION PROBLEM AREAS

# APPENDIX A2 PHOTOLOG – UT SOUTH FORK (REACH 1)

# **PROBLEM AREAS (Vegetation)**



Photo 1: Representative *Microstegium virmineum* and *Festuca spp.*-dominated problem areas. *Microstegium virmineum* is the dry brown grass dominating the channel in foreground of the photo, and *Festuca spp.* is the green grass on floodplain (Station No. 14+35; view downstream on 3-03-2008).



Photo 2: Representative bare bank problem area (Station No. 18+61 – 19+67; view upstream; 3-05-2008).

# APPENDIX A2 PHOTOLOG – UT SOUTH FORK (REACH 2)

# **PROBLEM AREAS (Vegetation)**



Photo 1: Invasive Chinese privet (*Ligustrum sinense*) problem area. Privet trees in this photo are those with green leaves (2-28-2008).



Photo 3: Representative multiflora rose (*Rosa multiflora*) problem area (Station No. 11+60; view downstream on 3-06-2008). Rose is located on left bank in upper left corner of photo.



Photo 2: Although not considered a 'problem,' it should be noted that cattails, which are sometimes invasive, were noted along all three reaches. This is a representative cattail (*Typha latifolia*) growth area on Monitoring Reach 2 (Station No. 11+00; view downstream on 3-06-2008). Also there is a large multiflora rose (*Rosa multiflora*) located on the left bank in the upper lefthand corner of the photo.

# APPENDIX A2 PHOTOLOG – UT SOUTH FORK (REACH 3)

# **PROBLEM AREAS (Vegetation)**



Photo 1: Although not considered a 'problem,' it should be noted that cattails, which are sometimes invasive, were noted along all three reaches. This is a representative cattail (*Typha latifolia*) growth area on Monitoring Reach 3 (Station No. 11+10; view upstream on 10-22-2008). Cattails are growing in channel at center of photo



Photo 2. Representative Chinese privet (*Ligustrum sinense*) problem area (Approximate Station No. 13+10-13+50; view upstream on 3-17-2008). Privet are the green shrubs located on the floodplain along the Western side of the project (i.e., along the top of the photo in the background).



Photo 3. Representative bare bank problem area (Station No. 16+40; view across channel from left bank on 3-18-2008). Bare bank is on left bank (i.e., nearest in photo).



Photo 4: Invasive tree of heaven (*Ailanthus altissima*) problem area (located within vegetation plot 11; photo taken on 10-22-2008).

Appendix A2 Page 1 of 1

# APPENDIX A3

# PHOTOLOG VEGETATION PLOTS

# APPENDIX A3 PHOTOLOG UT to SOUTH FORK

# **VEGETATION PLOTS**



Photo 1: Vegetation Plot 1 (10-21-2008).



Photo 3: Vegetation Plot 3 (10-21-2008).



Photo 5: Vegetation Plot 5 (10-21-2008).



Photo 2: Vegetation Plot 2 (10-21-2008).



Photo 4: Vegetation Plot 4 (10-21-2008).



Photo 6: Vegetation Plot 6 (10-21-2008).

Monitoring Year 3 Photolog - Vegetation Plots



Photo 7: Vegetation Plot 7 (10-21-2008).



Photo 9: Vegetation Plot 9 (10-21-2008).



Photo 11: Vegetation Plot 11 (10-21-2008).



Photo 8: Vegetation Plot 8 (10-21-2008).



Photo 10: Vegetation Plot 10 (10-21-2008).



Photo 12: Vegetation Plot 12 (10-21-2008).

# **APPENDIX B1**

PHOTOLOG STREAM PROBLEM AREAS

#### APPENDIX B1 PHOTOLOG – UT SOUTH FORK (REACH 1)

### **PROBLEM AREAS**



Photo 1: Representative aggradation problem area (Station No. 14+07 - 14+22; view upstream on 3-03-2008).



Photo 3: Representative problem J-hook (Station No. 14+92; view upstream; 2-28-2008).



Photo 2: Representative bank erosion problem area (Station No. 18+26 – 18+31.5; view of left bank; 2-28-2008).



Photo 4: Representative problem Root Wad (Station No. 15+55; view of erosion around footing on right bank; 2-28-2008).

### APPENDIX B1 PHOTOLOG – UT SOUTH FORK (REACH 2)

# **PROBLEM AREAS (Stream)**



Photo 1: Representative aggradation problem area (Station No. 13+96 – 14+15; view upstream on 3-11-2008).



Photo 2: Representative problem cross vane (Station No. 20+34; view of left bank on 3-11-2008). Note current coming out of bank on downstream of left arm (in view), an indication of water piping around the arm.



Photo 3: Representative bank erosion problem area (Station No. 10+78; facing left bank on 3-06-2008).

# APPENDIX B1 PHOTOLOG – UT to SOUTH FORK (REACH 3)

# PROBLEM AREAS (Stream)



Photo 1: Representative jhook problem area (Station No. 19+45; view of right bank, downstream, 11-6-2008).



Photo 2: Representative bank erosion problem area (Station No. 19+30; view upstream, right bank; 11-6-2008).



Photo 3: Representative sidebar/aggradation problem area (Station No. 18+29; view upstream;11-6-2008).



Photo 4: Bankfull flow event evidence (wrack line) at Station No. 10+00; Note foot of pole is resting at bankfull level; 3-16-2008.

Appendix B1 Page 1 of 1

# APPENDIX B2

# PHOTOLOG OF CROSS-SECTIONS AND PHOTO POINTS

# APPENDIX B2 PHOTOLOG – UT SOUTH FORK (REACH 1)

# **CROSS-SECTIONS & PHOTOPOINTS**



Cross-Section 1: View Downstream (3-03-2008).



Cross-Section 2: View Downstream (3-03-2008).



Cross-Section 3: View Downstream (3-05-2008).

Monitoring Year 3 Photolog – Cross Sections & Photopoints (Reach 1)



Cross-Section 1: View Upstream (3-03-2008).



Cross-Section 2: View Upstream (3-03-2008).



Cross-Section 3: View Upstream (3-05-2008).

Appendix B2 Page 1 of 6



Cross-Section 4: View Downstream (3-05-2008).



Cross-Section 4: View Upstream (3-05-2008).



Photo point 1: View Upstream (3-03-2008).



Photo point 1: View Downstream (3-03-2008).



Photo point 1: Facing Channel (3-03-2008).



Photo point 2: View Upstream (3-03-2008).



Photo point 2: View Downstream (3-03-2008).



Photo point 2: Facing Channel (3-03-2008).


Photo point 3: View Upstream (3-03-2008).



Photo point 3: View Downstream (3-03-2008).



Photo point 3: Facing Channel (3-03-2008).



Photo point 4: View Upstream (3-03-2008).



Photo point 4: View Downstream (3-03-2008).



Photo point 4: Facing Channel (3-03-2008).



Photo point 5: View Upstream (3-05-2008).



Photo point 5: View Downstream (3-05-2008).



Photo point 5: Facing Channel (3-05-2008).



Photo point 6: View Upstream (3-05-2008).



Photo point 6: View Downstream (3-05-2008).



Photo point 6: Facing Channel (3-05-2008).



Photo point 7: View Upstream (3-05-2008).



Photo point 7: View Downstream (3-05-2008).



Photo point 7: Facing Channel (3-05-2008).



Photo point 8: View Upstream (3-05-2008).



Photo point 8: View Downstream (3-05-2008).



Photo point 8: Facing Channel (3-05-2008).

### APPENDIX B2 PHOTOLOG – UT SOUTH FORK (REACH 2)

## **CROSS-SECTIONS & PHOTOPOINTS**



Cross-Section 5: View Downstream (3-11-2008).



Cross-Section 6: View Downstream (3-11-2008).



Cross-Section 5: View Upstream (3-11-2008).



Cross-Section 6: View Upstream (3-11-2008).



Photo point 1: View Upstream (3-06-2008).



Photo point 1: View Downstream (3-06-2008).



Photo point 1: Facing Channel (3-06-2008).



Photo point 2: View Upstream (3-06-2008).



Photo point 2: View Downstream (3-06-2008).



Photo point 2: Facing Channel (3-06-2008).



Photo point 3: View Upstream (3-06-2008).



Photo point 3: View Downstream (3-06-2008).



Photo point 3: Facing Channel (3-06-2008).



Photo point 4: View Upstream (3-06-2008).



Photo point 4: View Downstream (3-06-2008).



Photo point 4: Facing Channel (3-06-2008).



Photo point 5: View Upstream (3-11-2008).



Photo point 5: View Downstream (3-11-2008).



Photo point 5: Facing Channel (3-11-2008).



Photo point 6: View Upstream (3-11-2008).



Photo point 6: View Downstream (3-11-2008).



Photo point 6: Facing Channel (3-11-2008).



Photo point 7: View Upstream (3-11-2008).



Photo point 7: View Downstream (3-11-2008).



Photo point 7: Facing Channel (3-11-2008).

### APPENDIX B2 PHOTOLOG – UT SOUTH FORK (REACH 3)

## **CROSS-SECTION & PHOTOPOINTS**



Cross-Section 7: View Downstream (3-17-2008).



Cross-Section 8: View Downstream (3-17-2008).



Cross-Section 9: View Downstream (3-17-2008).

Monitoring Year 3 Photolog – Cross-Sections & Photopoints (Reach 3)



Cross-Section 7: View Upstream (3-17-2008).



Cross-Section 8: View Upstream (3-17-2008).



Cross-Section 9: View Upstream (3-17-2008).

Appendix B2 Page 1 of 5



Cross-Section 10: View Downstream (3-18-2008).



Cross-Section 11: View Downstream (3-18-2008).



Cross-Section 12: View Downstream (3-18-2008).



Cross-Section 10: View Upstream (3-18-2008).



Cross-Section 11: View Upstream (3-18-2008).



Cross-Section 12: View Upstream (3-18-2008).



Photo point 1: View Upstream (3-17-2008).



Photo point 1: View Downstream (3-17-2008).



Photo point 1: Facing Channel (3-17-2008).



Photo point 2: View Upstream (3-17-2008).



Photo point 2: View Downstream (3-17-2008).



Photo point 2: Facing Channel (3-17-2008).



Photo point 3: View Upstream (3-17-2008).



Photo point 3: View Downstream (3-17-2008).



Photo point 3: Facing Channel (3-17-2008).



Photo point 4: View Upstream (3-18-2008).



Photo point 4: View Downstream (3-18-2008).



Photo point 4: Facing Channel (3-18-2008).



Photo point 5: View Upstream (3-18-2008).



Photo point 5: View Downstream (3-18-2008).



Photo point 5: Facing Channel (3-18-2008).

## APPENDIX B3

# STREAM DATA TABLES

|                                                 |             |            |             | Table   | VIII a. 🛛 | Baselin  | e Morphol | ogy and Hy   | draulic Su    | mmary   |           |          |        |        |          |       |         |      |
|-------------------------------------------------|-------------|------------|-------------|---------|-----------|----------|-----------|--------------|---------------|---------|-----------|----------|--------|--------|----------|-------|---------|------|
|                                                 |             |            |             |         | UT to     | South    | Fork (Res | toration Sul | oreach 1)     |         |           |          |        |        |          |       |         |      |
|                                                 |             |            |             |         |           | Р        | roject Nu | nber 435     |               |         |           |          |        |        |          |       |         |      |
| Parameter                                       | US          | GGS Gage D | ata         | Regiona | al Curve  | Interval | Pre-I     | Existing Con | dition        | Project | Reference | Stream   |        | Design |          | A     | s-built | (*   |
|                                                 | Min         | Max        | Med         | Min     | Max       | Med      | Min       | Max          | Med           | Min     | Max       | Med      | Min    | Max    | Med      | Min   | Max     | Med  |
| Dimension                                       | IVIIII      | IVIAX      | wieu        | WIIII   | IVIAX     | Meu      | WIIII     | IVIAX        | Meu           | wiin    | IVIAX     | wieu     | IVIIII | WIAX   | Wieu     | IVIII | IVIAX   | Wieu |
| BF Width (ft)                                   | 28.00       | 30.00      | 29.00       |         |           |          | 3.00      | 3.40         | 3.20          | 6.50    | 10.00     | 8.00     | N/A    | N/A    | 9.40     |       |         | T    |
| Floodprone Width (ft)                           | 40.00       | 100.00     | 70.00       |         |           |          | N/A       | N/A          | 10.00         | 16.00   | 22.00     | 18.80    | N/A    | N/A    | >33      |       |         |      |
| BFCross Sectional Area (ft)                     | 58.60       | 58.90      | 58.80       |         |           |          | 2.90      | 3.60         | 3.20          | 3.90    | 6.30      | 5.30     | N/A    | N/A    | 5.90     |       |         |      |
| BF Mean Depth (ft)                              | 2.00        | 2.10       | 2.00        |         |           |          | 1.00      | 1.10         | 1.00          | 0.40    | 1.00      | 0.70     | N/A    | N/A    | 0.60     |       |         |      |
| Max Depth (ft)                                  | 2.70        | 3.00       | 2.90        |         |           |          | 1.00      | 1.80         | 1.40          | 0.90    | 1.40      | 1.10     | 0.80   | 1.30   | 1.00     |       |         |      |
| Width/Depth Ratio                               | 13.00       | 15.00      | 14.00       |         |           |          | N/A       | N/A          | 3.00          | 7.00    | 26.00     | 13.50    | N/A    | N/A    | 15.00    |       |         |      |
| Entrenchment Ratio                              | 1.30        | 3.60       | 2.40        |         |           |          | 2.90      | 3.30         | 3.10          | 2.00    | 3.40      | 2.40     | N/A    | N/A    | >2.2     |       |         |      |
| Bank Height Ratio                               | N/A         | N/A        | N/A         |         |           |          | 0.60      | 3.10         | 1.80          | 1.40    | 2.50      | 1.80     | N/A    | N/A    | 1.00     |       |         |      |
| Wetted Perimeter (ft)                           | 32.00       | 34.20      | 33.00       |         |           |          | 5.00      | 5.60         | 5.20          | 7.30    | 12.00     | 9.40     | N/A    | N/A    | 10.60    |       |         |      |
| Hydraulic radius (ft)                           | 1.83        | 1.72       | 1.78        |         |           |          | 0.58      | 0.64         | 0.62          | 0.53    | 0.53      | 0.56     | N/A    | N/A    | 0.56     |       |         |      |
| Pattern                                         |             |            |             |         |           |          |           |              |               |         |           |          |        |        |          |       |         |      |
| Channel Beltwidth (ft)                          | N/A         | N/A        | N/A         |         |           |          | 22.00     | 122.00       | 48.90         | 10.00   | 35.00     | 20.90    | 12.20  | 41.40  | 24.50    |       |         |      |
| Radius of Curvature (ft)                        | N/A         | N/A        | N/A         |         |           |          | 7.00      | 100.00       | 26.10         | 2.30    | 31.80     | 13.50    | 2.80   | 37.60  | 15.10    |       |         |      |
| Meander Wavelenght (ft)                         | N/A         | N/A        | N/A         |         |           |          | 21.00     | 282.00       | 136.70        | 35.00   | 70.00     | 50.00    | 41.40  | 82.80  | 59.30    |       |         |      |
| Meander Width Ratio                             | N/A         | N/A        | N/A         |         |           |          | 6.90      | 38.10        | 15.30         | 1.30    | 4.40      | 2.60     | 1.30   | 4.40   | 2.60     |       |         |      |
| Profile                                         |             |            |             |         |           |          |           |              |               |         |           |          |        |        |          |       |         |      |
| Riffle length (ft)                              | N/A         | N/A        | N/A         |         |           |          | N/A       | N/A          | N/A           | N/A     | N/A       | N/A      | N/A    | N/A    | N/A      |       |         |      |
| Riffle slope (ft/ft)                            | N/A         | N/A        | N/A         |         |           |          | 0.01      | 0.03         | 0.02          | 0.02    | 0.08      | 0.04     | 0.01   | 0.04   | 0.02     |       |         |      |
| Pool length (ft)                                | N/A         | N/A        | N/A         |         |           |          | 3.80      | 27.60        | 11.70         | 7.00    | 27.00     | 14.50    | 8.50   | 32.00  | 16.90    |       |         |      |
| Pool spacing (ft)                               | N/A         | N/A        | N/A         |         |           |          | 23.20     | 165.60       | 75.40         | 17.00   | 63.00     | 36.50    | 19.80  | 74.30  | 43.30    |       |         |      |
| Substrate                                       |             |            |             |         |           |          |           |              |               |         |           |          |        |        |          |       |         |      |
| d50 (mm)                                        | N/A         | N/A        | N/A         |         |           |          | N/A       | N/A          | 13.00         | N/A     | N/A       | 4.50     | N/A    | N/A    | N/A      |       |         |      |
| d84 (mm)                                        | N/A         | N/A        | N/A         |         |           |          | N/A       | N/A          | 44.00         | N/A     | N/A       | 33.00    | N/A    | N/A    | N/A      |       |         |      |
| Additional Reach Parameters                     |             |            |             |         |           |          |           |              |               |         |           |          |        |        |          |       |         |      |
| Valley Length (ft)                              | N/A         | N/A        | N/A         |         |           |          | N/A       | N/A          | N/A           | N/A     | N/A       | N/A      | N/A    | N/A    | N/A      |       |         | 1    |
| Channel Length (ft)                             | N/A         | N/A        | N/A         |         |           |          | N/A       | N/A          | N/A           | N/A     | N/A       | N/A      | N/A    | N/A    | N/A      |       |         | -    |
| Sinuosity                                       | N/A         | N/A        | N/A         |         |           |          | N/A       | N/A          | 1 22          | N/A     | N/A       | 1 40     | N/A    | N/A    | 1 26     |       |         |      |
| Water Surface Slope (ft/ft)                     | N/A         | N/A        | 0.00        |         |           |          | N/A       | N/A          | 0.01          | N/A     | N/A       | 0.02     | N/A    | N/A    | 0.01     |       |         | +    |
| BE slope (ft/ft)                                | N/A         | N/A        | 0.00        |         |           |          | N/A       | N/A          | 0.01          | N/A     | N/A       | 0.02     | N/A    | N/A    | 0.01     |       |         |      |
| Dr stope (11/1)                                 | N/A         | N/A        | 0.00<br>B/C |         |           |          | N/A       | N/A          | 0.01<br>F 4/1 | N/A     | N/A       | C/F 4/1  | N/A    | N/A    | C/F 4/1  |       |         | +    |
| Kosgen Classification                           | 1.17.25     | 1 1/21     | BIC         |         |           |          | 11/21     | 1.1/21       | 12 4/1        | 11/21   | 11/21     | C/12 4/1 | 11/21  | 11/21  | C/12 4/1 |       |         | +    |
|                                                 |             |            |             |         |           |          | <u> </u>  |              |               |         |           |          |        |        |          |       |         | +    |
| *Nacrobentnos                                   | Alatin Atom |            |             |         | 1         |          |           |              |               |         |           |          |        |        |          |       |         |      |
| "As-built information is unavailable to SEPI at | unis time.  |            |             | I       |           |          |           |              |               |         |           |          | I      |        |          |       |         |      |

|                                                 |           |           |       | Table V | III b. B             | aseline | Morpho   | ogy and  | Hyd  | raulic Su | mmary   |           |                |        |        |         |       |          |     |
|-------------------------------------------------|-----------|-----------|-------|---------|----------------------|---------|----------|----------|------|-----------|---------|-----------|----------------|--------|--------|---------|-------|----------|-----|
|                                                 |           |           |       |         | UT to S              | South F | ork (Res | toration | Sub  | reach 2)  |         |           |                |        |        |         |       |          |     |
|                                                 |           |           |       |         |                      | Pr      | oject Nu | mber 43  | 5    | ,         |         |           |                |        |        |         |       |          |     |
| Parameter                                       | US        | GS Gage D | ata   | Reg     | ional Cu<br>Interval | urve    | Pre-     | Existing | Conc | lition    | Project | Reference | Stream         |        | Design |         | A     | As-built | *   |
|                                                 | Min       | Mor       | Mod   | Min     | Mor                  | Mad     | Min      | Mor      |      | Mad       | Min     | Mor       | Mad            | Min    | Mor    | Mad     | Min   | Mor      | Mad |
| Dimension                                       | IVIIII    | IVIAX     | Meu   | WIIII   | IVIAX                | Meu     | WIIII    | IVIAX    | ŀ    | Meu       | IVIIII  | wiax      | Meu            | IVIIII | Max    | Meu     | WIIII | wiax     | Meu |
| BF Width (ft)                                   | 28.00     | 30.00     | 29.00 | 1       | 1                    | 1       | N/A      | N/A      |      | 9.00      | 6.50    | 10.00     | 8.00           | N/A    | N/A    | 12.20   | 1     |          | 1   |
| Floodprone Width (ft)                           | 40.00     | 100.00    | 70.00 |         |                      |         | N/A      | N/A      |      | 68.00     | 16.00   | 22.00     | 18.80          | N/A    | N/A    | >26.8   |       |          |     |
| BFCross Sectional Area (ft)                     | 58.60     | 58.90     | 58.80 |         |                      |         | N/A      | N/A      |      | 10.20     | 3.90    | 6.30      | 5.30           | N/A    | N/A    | 10.00   |       |          |     |
| BF Mean Depth (ft)                              | 2.00      | 2.10      | 2.00  |         |                      |         | N/A      | N/A      |      | 1.10      | 0.40    | 1.00      | 0.70           | N/A    | N/A    | 0.80    |       |          |     |
| Max Depth (ft)                                  | 2.70      | 3.00      | 2.90  |         |                      |         | 1.0      | 0        | 2.10 | 1.50      | 0.90    | 1.40      | 1.10           | 1.00   | 1.60   | 1.30    |       |          |     |
| Width/Depth Ratio                               | 13.00     | 15.00     | 14.00 |         |                      |         | N/A      | N/A      |      | 8.00      | 7.00    | 26.00     | 13.50          | N/A    | N/A    | 15.00   |       |          |     |
| Entrenchment Ratio                              | 1.30      | 3.60      | 2.40  |         |                      |         | N/A      | N/A      |      | 7.60      | 2.00    | 3.40      | 2.40           | N/A    | N/A    | >2.2    |       |          |     |
| Bank Height Ratio                               | N/A       | N/A       | N/A   |         |                      |         | N/A      | N/A      |      | 1.70      | 1.40    | 2.50      | 1.80           | N/A    | N/A    | 1.00    |       |          |     |
| Wetted Perimeter (ft)                           | 32.00     | 34.20     | 33.00 |         |                      |         | N/A      | N/A      |      | 11.20     | 7.30    | 12.00     | 9.40           | N/A    | N/A    | 13.80   |       |          |     |
| Hydraulic radius (ft)                           | 1.83      | 1.72      | 1.78  |         |                      |         | N/A      | N/A      |      | 0.91      | 0.53    | 0.53      | 0.56           | N/A    | N/A    | 0.72    |       |          |     |
| Pattern                                         |           |           |       |         |                      |         |          |          |      |           |         |           |                |        |        |         |       |          |     |
| Channel Beltwidth (ft)                          | N/A       | N/A       | N/A   |         |                      |         | 12.0     | 0 11     | 4.00 | 45.70     | 10.00   | 35.00     | 20.90          | 15.90  | 53.90  | 31.80   |       |          |     |
| Radius of Curvature (ft)                        | N/A       | N/A       | N/A   |         |                      |         | 5.0      | 0 14     | 0.00 | 28.00     | 2.30    | 31.80     | 13.50          | 3.70   | 49.00  | 19.60   |       |          |     |
| Meander Wavelenght (ft)                         | N/A       | N/A       | N/A   |         |                      |         | 40.0     | 0 17     | 2.00 | 87.90     | 35.00   | 70.00     | 50.00          | 53.90  | 107.80 | 77.20   |       |          |     |
| Meander Width Ratio                             | N/A       | N/A       | N/A   |         |                      |         | 1.3      | 0 1      | 2.70 | 5.10      | 1.30    | 4.40      | 2.60           | 1.30   | 4.40   | 2.60    |       |          |     |
| Profile                                         |           |           |       |         |                      |         |          |          |      |           |         |           |                |        |        |         |       |          |     |
| Riffle length (ft)                              | N/A       | N/A       | N/A   |         |                      |         | N/A      | N/A      |      | N/A       | N/A     | N/A       | N/A            | N/A    | N/A    | N/A     |       |          |     |
| Riffle slope (ft/ft)                            | N/A       | N/A       | N/A   |         |                      |         | 0.0      | 0        | 0.08 | 0.03      | 0.02    | 0.08      | 0.04           | 0.01   | 0.05   | 0.03    |       |          |     |
| Pool length (ft)                                | N/A       | N/A       | N/A   |         |                      |         | 3.8      | 0 2      | 7.60 | 12.40     | 7.00    | 27.00     | 14.50          | 11.00  | 41.60  | 22.00   |       |          |     |
| Pool spacing (ft)                               | N/A       | N/A       | N/A   |         |                      |         | 12.9     | 0 7      | 5.90 | 35.40     | 17.00   | 63.00     | 36.50          | 25.70  | 96.80  | 56.30   |       |          |     |
| Substrate                                       |           |           |       |         |                      |         |          |          |      |           |         |           |                |        |        |         |       |          |     |
| d50 (mm)                                        | N/A       | N/A       | N/A   |         |                      |         | N/A      | N/A      |      | 13.00     | N/A     | N/A       | 4.50           | N/A    | N/A    | N/A     |       |          |     |
| d84 (mm)                                        | N/A       | N/A       | N/A   |         |                      |         | N/A      | N/A      |      | 44.00     | N/A     | N/A       | 53.00          | N/A    | N/A    | N/A     |       |          |     |
| Additional Reach Parameters                     |           |           |       |         |                      |         |          |          |      |           |         |           |                |        |        |         |       |          |     |
| Valley Length (ft)                              | N/A       | N/A       | N/A   |         |                      |         | N/A      | N/A      | ·    | N/A       | N/A     | N/A       | N/A            | N/A    | N/A    | N/A     |       |          |     |
| Channel Length (ft)                             | N/A       | N/A       | N/A   |         |                      |         | N/A      | N/A      | ŀ    | N/A       | N/A     | N/A       | N/A            | N/A    | N/A    | N/A     |       |          |     |
| Sinuosity                                       | N/A       | N/A       | N/A   |         |                      |         | N/A      | N/A      |      | 1.27      | N/A     | N/A       | 1.40           | N/A    | N/A    | 1.58    |       |          |     |
| Water Surface Slope (ft/ft)                     | N/A       | N/A       | 0.00  |         |                      |         | N/A      | N/A      |      | 0.02      | N/A     | N/A       | 0.02           | N/A    | N/A    | 0.01    |       |          |     |
| BF slope (ft/ft)                                | N/A       | N/A       | 0.00  |         |                      |         | N/A      | N/A      |      | 0.02      | N/A     | N/A       | 0.02           | N/A    | N/A    | 0.01    |       |          |     |
| Rosen Classification                            | N/A       | N/A       | 8/C   |         |                      |         | N/A      | N/A      | -    | E 4/1     | N/A     | N/A       | C/E 4/1        | N/A    | N/A    | C/E 4/1 |       |          |     |
| *Hahitat Index                                  |           |           | 210   |         |                      |         |          |          | ł    |           |         |           | <i>372</i> 1/1 |        |        | 5/2 WI  |       |          |     |
| *Macrobenthos                                   |           |           |       |         |                      |         |          | 1        |      |           |         |           |                |        |        |         |       |          |     |
| *As-built information is unavailable to SEDI at | this time |           |       |         |                      |         |          | 1        |      |           |         | l         |                |        |        | I       |       |          | I   |
| As-out mornation is unavailable to SEFT at      | uns une.  |           |       | I       |                      |         | I        |          |      |           | l       |           |                |        |        |         |       |          |     |

| Table VIII c. Baseline Morphology and Hydraulic Summary |            |            |       |     |                      |         |            |          |         |           |        |             |          |       |        |         |          |         |       |
|---------------------------------------------------------|------------|------------|-------|-----|----------------------|---------|------------|----------|---------|-----------|--------|-------------|----------|-------|--------|---------|----------|---------|-------|
|                                                         |            |            |       |     | UT t                 | o Soutł | n Fork (Re | storat   | tion Su | breach 3) |        |             |          |       |        |         |          |         |       |
|                                                         |            |            |       |     |                      |         | Project Nu | umber    | r 435   |           |        |             |          |       |        |         |          |         |       |
| Parameter                                               | U          | SGS Gage I | Data  | Reg | ional Cu<br>Interval | urve    | Pre-       | Existi   | ng Con  | dition    | Projec | t Reference | e Stream |       | Design |         |          | As-buil | t*    |
|                                                         | Min        | Max        | Med   | Min | Max                  | Med     | Min        | Max      |         | Med       | Min    | Max         | Med      | Min   | Max    | Med     | Min      | Max     | Med   |
| Dimension                                               |            | 1          |       |     |                      |         |            |          |         |           |        |             |          |       |        |         |          |         |       |
| BF Width (ft)                                           | 28.00      | 30.00      | 29.00 |     |                      |         | N/A        | N/A      |         | 12.00     | 6.50   | 10.00       | 8.00     | N/A   | N/A    | 14.0    | 0        |         |       |
| Floodprone Width (ft)                                   | 40.00      | 100.00     | 70.00 |     |                      |         | N/A        | N/A      |         | 25.00     | 16.00  | 22.00       | 18.80    | N/A   | N/A    | >30.8   |          |         |       |
| BFCross Sectional Area (ft)                             | 58.60      | 58.90      | 58.80 |     |                      |         | N/A        | N/A      |         | 12.10     | 3.90   | 6.30        | 5.30     | N/A   | N/A    | 15.0    | 0        |         |       |
| BF Mean Depth (ft)                                      | 2.00       | 2.10       | 2.00  |     |                      |         | N/A        | N/A      |         | 1.00      | 0.40   | 1.00        | 0.70     | N/A   | N/A    | 1.1     | 0        |         |       |
| Max Depth (ft)                                          | 2.70       | 3.00       | 2.90  |     |                      |         | 1.20       |          | 3.20    | 1.80      | 0.90   | 1.40        | 1.10     | 1.40  | 2.20   | 1.8     | 0        |         |       |
| Width/Depth Ratio                                       | 13.00      | 15.00      | 14.00 |     |                      |         | N/A        | N/A      |         | 12.00     | 7.00   | 26.00       | 13.50    | N/A   | N/A    | 13.0    | 0        |         |       |
| Entrenchment Ratio                                      | 1.30       | 3.60       | 2.40  |     |                      |         | N/A        | N/A      |         | 2.10      | 2.00   | 3.40        | 2.40     | N/A   | N/A    | >2.2    |          |         |       |
| Bank Height Ratio                                       | N/A        | N/A        | N/A   |     |                      |         | N/A        | N/A      |         | 2.40      | 1.40   | 2.50        | 1.80     | N/A   | N/A    | 1.0     | 0        |         |       |
| Wetted Perimeter (ft)                                   | 32.00      | 34.20      | 33.00 |     |                      |         | N/A        | N/A      |         | 14.00     | 7.30   | 12.00       | 9.40     | N/A   | N/A    | 16.2    | 0        |         |       |
| Hydraulic radius (ft)                                   | 1.83       | 1.72       | 1.78  |     |                      |         | N/A        | N/A      |         | 0.86      | 0.53   | 0.53        | 0.56     | N/A   | N/A    | 0.9     | 3        |         |       |
| Pattern                                                 |            |            |       |     |                      |         |            |          |         |           |        |             |          |       |        |         |          |         |       |
| Channel Beltwidth (ft)                                  | N/A        | N/A        | N/A   |     |                      |         | 19.00      |          | 77.00   | 39.70     | 10.00  | 35.00       | 20.90    | 4.00  | 56.00  | 22.0    | 0        |         |       |
| Radius of Curvature (ft)                                | N/A        | N/A        | N/A   |     |                      |         | 11.00      |          | 46.00   | 22.20     | 2.30   | 31.80       | 13.50    | 4.00  | 56.00  | 22.0    | 0        |         |       |
| Meander Wavelenght (ft)                                 | N/A        | N/A        | N/A   |     |                      |         | 60.00      |          | 109.00  | 80.40     | 35.00  | 70.00       | 50.00    | 62.00 | 123.00 | 88.0    | 0        |         |       |
| Meander Width Ratio                                     | N/A        | N/A        | N/A   |     |                      |         | 1.60       |          | 6.40    | 3.30      | 1.30   | 4.40        | 2.60     | 1.30  | 4.40   | 2.6     | 0        |         |       |
| Profile                                                 |            |            |       |     |                      |         |            |          |         |           |        |             |          |       |        |         |          |         |       |
| Riffle length (ft)                                      | N/A        | N/A        | N/A   |     | 1                    |         | N/A        | N/A      |         | N/A       | N/A    | N/A         | N/A      | N/A   | N/A    | N/A     |          |         |       |
| Riffle slope (ft/ft)                                    | N/A        | N/A        | N/A   |     |                      |         | 0.00       |          | 0.05    | 0.02      | 0.02   | 0.08        | 0.04     | 0.00  | 0.02   | 0.0     | 1        |         |       |
| Pool length (ft)                                        | N/A        | N/A        | N/A   |     |                      |         | 9.40       |          | 59.20   | 35.30     | 7.00   | 27.00       | 14.50    | 13.00 | 48.00  | 25.0    | 0        |         |       |
| Pool spacing (ft)                                       | N/A        | N/A        | N/A   |     |                      |         | 37.80      |          | 103.90  | 73.20     | 17.00  | 63.00       | 36.50    | 29.00 | 111.00 | 64.0    | 0        |         |       |
| Substrate                                               |            |            |       |     |                      |         |            |          |         |           |        |             |          |       |        |         |          |         |       |
| d50 (mm)                                                | N/A        | N/A        | N/A   |     |                      |         | N/A        | N/A      |         | 13.00     | N/A    | N/A         | 4 50     | N/A   | N/A    | N/A     |          |         |       |
| d84 (mm)                                                | N/A        | N/A        | N/A   |     |                      |         | N/A        | N/A      |         | 45.00     | N/A    | N/A         | 53.00    | N/A   | N/A    | N/A     |          |         | +     |
| dditional Daach Danamatan                               | 1.011      | 10/1       | 10/1  |     |                      |         | 10/1       | 1,011    |         | 42.00     | 10/1   | 10/1        | 25100    | 1011  | 10/1   | 1,011   |          | _       |       |
|                                                         | NT/A       | NT/A       | NI/A  |     |                      |         | NT/A       | NI/A     |         | NT/A      | NT/A   | NI/A        | NT/ A    | NT/A  | NT/A   | NT/A    |          |         |       |
|                                                         | IN/A       | IN/A       | IN/A  |     |                      |         | N/A        | IN/A     |         | N/A       | IN/A   | N/A         | N/A      | IN/A  | IN/A   | N/A     | -        | -       | +     |
| Channel Length (ft)                                     | N/A        | N/A        | N/A   |     |                      |         | N/A        | N/A      |         | N/A       | N/A    | N/A         | N/A      | N/A   | N/A    | N/A     | <i>.</i> | _       | +     |
| Sinuosity                                               | IN/A       | IN/A       | IN/A  |     |                      |         | IN/A       | IN/A     |         | 1.16      | IN/A   | IN/A        | 1.40     | IN/A  | IN/A   | 1.1     | 0        |         | ╉───┦ |
| Water Surface Slope (ft/ft)                             | N/A        | N/A        | 0.00  |     |                      |         | N/A        | N/A      |         | 0.01      | N/A    | N/A         | 0.02     | N/A   | N/A    | 0.0     | 1        | _       | ┥──┤  |
| BF slope (ft/ft)                                        | N/A        | N/A        | 0.00  |     |                      |         | N/A        | N/A      |         | 0.01      | N/A    | N/A         | 0.02     | N/A   | N/A    | 0.0     | 1        | _       | +     |
| Rosgen Classification                                   | N/A        | N/A        | B/C   |     |                      |         | N/A        | N/A      |         | E 4/1     | N/A    | N/A         | C/E 4/1  | N/A   | N/A    | C/E 4/1 | +        |         | +     |
| *Habitat Index                                          | ļ          |            |       |     | L                    | L       | ļ          | <u> </u> |         |           |        |             |          |       |        | ļ       |          |         | +     |
| *Macrobenthos                                           |            |            |       |     |                      |         |            |          |         |           |        |             |          |       |        |         |          |         |       |
| As-built information is unavailable to SEPI at          | this time. |            |       |     |                      |         |            |          |         |           |        |             |          |       |        |         |          |         |       |

|                                                 |            |           |             | Table | e VIII d. Basel | ine Morph   | ology and H  | ydraulic S    | Summary      |             |                 |       |        |                 |                     |          |              |
|-------------------------------------------------|------------|-----------|-------------|-------|-----------------|-------------|--------------|---------------|--------------|-------------|-----------------|-------|--------|-----------------|---------------------|----------|--------------|
|                                                 |            |           |             |       | UT to Sout      | th Fork (Re | estoration S | ubreach 4)    | )            |             |                 |       |        |                 |                     |          |              |
|                                                 |            |           |             |       |                 | Project N   | umber 435    |               |              |             |                 |       |        |                 |                     |          |              |
| Parameter                                       | US         | GS Gage D | ata         | Regi  | ional Curve     | Pre-F       | Existing Con | dition        | Projec       | t Reference | e Stream        |       | Design |                 | А                   | s-built' | ł¢           |
| Tarancer                                        |            | ob ouge b | utu         | ]     | Interval        |             | inioting con | union         | 110,000      |             | obream          |       | Design |                 |                     | 5 0 unit |              |
|                                                 | Min        | Max       | Med         | Min   | Max Med         | Min         | Max          | Med           | Min          | Max         | Med             | Min   | Max    | Med             | Min                 | Max      | Med          |
| Dimension                                       |            |           |             |       |                 |             |              |               |              |             |                 |       |        |                 |                     |          |              |
| BF Width (ft)                                   | 28.00      | 30.00     | 29.00       |       |                 | 13.00       | 18.00        | 15.70         | 6.50         | 10.00       | 8.00            |       |        | 14.10           |                     |          |              |
| Floodprone Width (ft)                           | 40.00      | 100.00    | 70.00       |       |                 | 21.00       | 200.00       | 82.00         | 16.00        | 22.00       | 18.80           |       |        | >31.00          |                     |          |              |
| BFCross Sectional Area (ft)                     | 58.60      | 58.90     | 58.80       |       |                 | 19.40       | 33.00        | 25.10         | 3.90         | 6.30        | 5.30            |       |        | 25.00           |                     |          |              |
| BF Mean Depth (ft)                              | 2.00       | 2.10      | 2.00        |       |                 | 1.50        | 1.80         | 1.60          | 0.40         | 1.00        | 0.70            |       |        | 1.80            |                     |          |              |
| Max Depth (ft)                                  | 2.70       | 3.00      | 2.90        |       |                 | 1.60        | 2.90         | 1.90          | 0.90         | 1.40        | 1.10            | 2.30  | 3.50   | 2.80            |                     |          |              |
| Width/Depth Ratio                               | 13.00      | 15.00     | 14.00       |       |                 | 9.00        | 11.00        | 10.00         | 7.00         | 26.00       | 13.50           |       |        | 8.00            |                     |          |              |
| Entrenchment Ratio                              | 1.30       | 3.60      | 2.40        |       |                 | 1.60        | 11.10        | 4.40          | 2.00         | 3.40        | 2.40            | N/A   | N/A    | >2.20           |                     |          |              |
| Bank Height Ratio                               | N/A        | N/A       | N/A         |       |                 | 0.60        | 2.10         | 1.90          | 1.40         | 2.50        | 1.80            | N/A   | N/A    | 1.00            |                     |          |              |
| Wetted Perimeter (ft)                           | 32.00      | 34.20     | 33.00       |       |                 | 16.00       | 21.60        | 18.90         | 7.30         | 12.00       | 9.40            | N/A   | N/A    | 17.70           |                     |          |              |
| Hydraulic radius (ft)                           | 1.83       | 1.72      | 1.78        |       |                 | 1.21        | 1.53         | 1.33          | 0.53         | 0.53        | 0.56            | N/A   | N/A    | 1.41            |                     |          |              |
| Pattern                                         |            |           |             |       |                 |             |              |               |              |             |                 |       |        |                 |                     |          |              |
| Channel Beltwidth (ft)                          | N/A        | N/A       | N/A         |       |                 | 27.00       | 151.00       | 56.10         | 10.00        | 35.00       | 20.90           | 18.40 | 62.20  | 36.80           |                     |          |              |
| Radius of Curvature (ft)                        | N/A        | N/A       | N/A         |       |                 | 5.00        | 138.00       | 29.30         | 2.30         | 31.80       | 13.50           | 4.20  | 56.60  | 22.60           |                     |          | ──┤          |
| Meander Wavelenght (ft)                         | N/A        | N/A       | N/A         |       |                 | 45.00       | 340.00       | 127.30        | 35.00        | 70.00       | 50.00           | 62.20 | 124.40 | 89.10           | $ \longrightarrow $ |          | └──┤         |
| Meander Width Ratio                             | N/A        | N/A       | N/A         |       |                 | 1.70        | 9.60         | 3.60          | 1.30         | 4.40        | 2.60            | 1.30  | 4.40   | 2.60            |                     |          |              |
| Profile                                         |            |           |             |       |                 |             |              |               |              |             |                 |       |        |                 |                     |          |              |
| Riffle length (ft)                              | N/A        | N/A       | N/A         |       |                 | N/A         | N/A          | N/A           | N/A          | N/A         | N/A             | N/A   | N/A    | N/A             |                     |          |              |
| Riffle slope (ft/ft)                            | N/A        | N/A       | N/A         |       |                 | 0.00        | 0.06         | 0.02          | 0.02         | 0.08        | 0.04            | 0.00  | 0.02   | 0.01            |                     |          |              |
| Pool length (ft)                                | N/A        | N/A       | N/A         |       |                 | 15.90       | 197.30       | 67.80         | 7.00         | 27.00       | 14.50           | 12.70 | 48.10  | 25.40           |                     |          |              |
| Pool spacing (ft)                               | N/A        | N/A       | N/A         |       |                 | 34.60       | 280.60       | 121.60        | 17.00        | 63.00       | 36.50           | 29.70 | 111.70 | 65.00           |                     |          |              |
| Substrate                                       |            |           |             |       |                 |             |              |               |              |             |                 |       |        |                 |                     |          |              |
| d50 (mm)                                        | N/A        | N/A       | N/A         |       |                 | N/A         | N/A          | 2.00          | N/A          | N/A         | 4.50            | N/A   | N/A    | N/A             |                     |          |              |
| d84 (mm)                                        | N/A        | N/A       | N/A         |       |                 | N/A         | N/A          | 30.00         | N/A          | N/A         | 53.00           | N/A   | N/A    | N/A             |                     |          |              |
| Additional Reach Parameters                     |            |           |             |       |                 |             |              |               |              |             |                 |       |        |                 |                     |          |              |
| Valley Length (ft)                              | N/A        | N/A       | N/A         |       |                 | N/A         | N/A          | N/A           | N/A          | N/A         | N/A             | N/A   | N/A    | N/A             |                     | _        |              |
| Channel Length (ft)                             | N/A        | N/A       | N/A         |       |                 | N/A         | N/A          | N/A           | N/A          | N/A         | N/A             | N/A   | N/A    | N/A             |                     |          | <b>├</b> ──┤ |
| Sinuosity                                       | N/A        | N/A       | N/A         |       |                 | N/A         | N/A          | 1 23          | N/A          | N/A         | 1.4             | N/A   | N/A    | 1 23            |                     |          | <b>├</b> ──┤ |
| Water Surface Slope (ft/ft)                     | N/A        | N/A       | 0.00        |       |                 | N/A         | N/A          | 1.23          | N/A          | N/A         | 0.02            | N/A   | N/A    | 0.01            | $\vdash$            |          | $\vdash$     |
| PE slope (ft/ft)                                | N/A        | N/A       | 0.00        |       |                 | N/A         | N/A          | 1.01          | N/A          | N/A         | 1.02            | N/A   | N/A    | 1.01            | ┢───┤               |          | $\vdash$     |
| Dr slope (It/It)                                | N/A        | N/A       | 0.00<br>P/C |       |                 | N/A         | N/A          | 1.01<br>E 4/1 | N/A          | N/A         | 1.02<br>C/E 4/1 |       | N/A    | 1.01<br>C/E 4/1 | ├                   |          | $\vdash$     |
| Kosgen Classification                           | IN/A       | IN/A      | D/C         |       |                 | IN/A        | IV/A         | E 4/1         | 1 <b>\/A</b> | IN/A        | U/L 4/1         | IN/A  | IN/A   | C/E 4/1         | ┝──┤                |          | ┝──┤         |
| *Habitat Index                                  |            |           |             |       |                 |             |              |               |              |             |                 |       |        | <u> </u>        | ┝──┤                |          | ┝──┤         |
| *Macrobenthos                                   |            |           |             |       |                 |             |              |               |              |             |                 |       |        | L               | $\mid$              |          |              |
| *As-built information is unavailable to SEPI at | this time. |           |             |       |                 | 1           |              |               |              |             |                 |       |        |                 | 1                   |          |              |

|                             |       |          |           |          | ,        | Table l | IX a. M | lorpholo  | gy and  | l Hydra  | ulic M  | onitor  | ing Sur  | nmary     |           |           |        |     |      |         |           |         |     |     |
|-----------------------------|-------|----------|-----------|----------|----------|---------|---------|-----------|---------|----------|---------|---------|----------|-----------|-----------|-----------|--------|-----|------|---------|-----------|---------|-----|-----|
|                             |       |          |           |          |          |         |         | UT        | to Sou  | th Forl  | k Creel | K       |          |           |           |           |        |     |      |         |           |         |     |     |
|                             |       |          |           |          |          |         | S       | Segment/  | Reach   | : 1 (114 | 0 linea | r feet) |          |           |           |           |        |     |      |         |           |         |     |     |
| Parameter                   |       | Cros     | ss Sectio | on 1 Rif | ffle     |         |         | Cros      | ss Sect | ion 2 Pc | ool     |         |          | Cro       | ss Sectio | on 3 Riff | le     |     |      | Cro     | ss Sectio | n 4 Poc | 1   |     |
| Dimension                   | MY1   | MY2      | MY3       | MY4      | MY5      | MY+     | MY1     | MY2       | MY3     | MY4      | MY5     | MY+     | MY1      | MY2       | MY3       | MY4       | MY5    | MY+ | MY1  | MY2     | MY3       | MY4     | MY5 | MY- |
| BF Width (ft)               | 12.1  | 13.4     | 11.0      |          |          |         | 12.6    | 12.6      | 12.6    |          |         |         | 13.8     | 10.9      | 9.0       |           |        |     | 11.8 | 12.0    | 11.3      |         |     |     |
| Floodporne Width (ft)       | 99    | 100+     | 100+      |          |          |         | NA      | NA        | NA      |          |         |         | 40+      | 35+       | 24+       |           |        |     | NA   | NA      | NA        |         |     |     |
| BFCross Sectional Area (ft) | 8.2   | 8.7      | 7.8       |          |          |         | 12.3    | 11.9      | 11.9    |          |         |         | 8.1      | 6.1       | 5.7       |           |        |     | 13.7 | 11.1    | 13.6      |         |     |     |
| BF Mean Depth (ft)          | 0.7   | 0.6      | 0.7       |          |          |         | 1.0     | 0.9       | 0.9     |          |         |         | 0.6      | 0.6       | 0.6       |           |        |     | 1.2  | 0.9     | 1.2       |         |     |     |
| Width/Depth Ratio           | 17.9  | 20.7     | 15.4      |          |          |         | NA      | NA        | NA      |          |         |         | 23.6     | 18.1      | 14.3      |           |        |     | NA   | NA      | NA        |         |     |     |
| Entrenchment Ratio          | 8.5   | 7.5+     | 9.1+      |          |          |         | NA      | NA        | NA      |          |         |         | 3.0+     | 3.2+      | 2.7+      |           |        |     | NA   | NA      | NA        |         |     |     |
| Bank Height Ratio           | 1.0   | 1.0      | 1.0       |          |          |         | NA      | NA        | NA      |          |         |         | 1.0      | 1.0       | 1.4       |           |        |     | NA   | NA      | NA        |         |     |     |
| Wetted Perimeter (ft)       | 50.5  | 15.6     | 11.6      |          |          |         | 13.6    | 14.1      | 14.1    |          |         |         | 14.9     | 14.2      | 9.8       |           |        |     | 12.3 | 14      | 13.6      |         |     |     |
| Hydraulic radius (ft)       | 0.4   | 0.5      | 0.9       |          |          |         | 0.9     | 0.8       | 0.8     |          |         |         | 0.5      | 0.4       | 0.6       |           |        |     | 1.1  | 0.8     | 1.1       |         |     |     |
| Substrate                   |       |          |           |          |          |         |         |           |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| d50 (mm)                    | sand  | < 0.062  | 0.1       |          |          |         | sand    | < 0.062   | 0.63    |          |         |         | sand     | < 0.062   | < 0.062   |           |        |     | sand | < 0.062 | < 0.062   |         |     |     |
| d84 (mm)                    | sand  | 15       | 21        |          |          |         | sand    | < 0.062   | 4.8     |          |         |         | sand     | < 0.062   | < 0.062   |           |        |     | sand | < 0.062 | 11        |         |     |     |
|                             |       |          |           |          |          |         |         |           |         |          |         |         | <b>-</b> |           |           |           |        |     | I    |         |           |         |     |     |
| Parameter                   | M     | Y-01 (20 | 06)       | MY       | 7-02 (20 | )07)    | MY      | Y-03 (200 | 08)     | MY       | -04 (20 | 09)     | M        | IY-05 (20 | 010)      | MY        | Y+ (20 | 11) |      |         |           |         |     |     |
| Pattern                     | Min   | Max      | Med       | Min      | Max      | Med     | Min     | Max       | Med     | Min      | Max     | Med     | Min      | Max       | Med       | Min       | Max    | Med |      |         |           |         |     |     |
| Channel Beltwidth (ft)      | 8.9   | 51.8     | 20.7      | 17.7     | 63.6     | 24.8    | 15.1    | 48.2      | 24.2    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Radius of Curvature (ft)    | 9.1   | 39.1     | 14.4      | 8.5      | 41.7     | 20.1    | 10.5    | 44.6      | 21.1    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Meander Wavelenght (ft)     | 46.4  | 95.8     | 62.9      | 38.6     | 120      | 68.4    | 46.4    | 101.0     | 67.3    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Meander Width Ratio         | 0.69  | 4.02     | 1.61      | 1.32     | 4.73     | 1.90    | 1.38    | 4.38      | 2.20    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Profile                     |       |          |           |          |          |         |         |           |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Riffle length (ft)          | 2.6   | 61.1     | 8.9       | 2.7      | 43.7     | 11.1    | 3.71    | 30.03     | 11.3    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Riffle slope (ft/ft)        | 0.000 | 0.082    | 0.014     | 0.002    | 0.113    | 0.023   | 0.005   | 0.1451    | 0.03    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Pool length (ft)            | 4.4   | 71.0     | 12.10     | 5.6      | 46.6     | 13.8    | 7.31    | 44.37     | 15.6    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Pool spacing (ft)           | 8.5   | 126.5    | 34.4      | 6.4      | 72.2     | 25.7    | 12.83   | 64.32     | 31.7    |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Additional Reach Parameters |       |          |           |          |          |         |         |           |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Valley Length (ft)          |       | 926      |           |          | 925      |         |         | 850       |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Channel Length (ft)         |       | 1166     |           |          | 1140     |         |         | 1058      |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Sinuosity                   |       | 1.26     |           |          | 1.23     |         |         | 1.24      |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Water Surface Slope (ft/ft) |       | 0.0098   |           | 1        | 0.0096   |         |         | 0.0096    |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| BF slope (ft/ft)            |       | 0.0094   |           |          | 0.0099   |         |         | 0.0102    |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| Rosgen Classification       |       | C5       |           |          | C6       |         |         | C5/6      |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| *Habitat Index              |       | NA       |           |          | NA       |         |         | NA        |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |
| *Macrobenthos               |       | NA       |           |          | NA       |         |         | NA        |         |          |         |         |          |           |           |           |        |     |      |         |           |         |     |     |

|                                         |       |                    | Т          | able IX  | b. Mor   | pholog | y and Hy  | ydraulic N | Aonitorii  | ng Sumn   | nary                                   |                                              |                                        |          |     |     |          |     |
|-----------------------------------------|-------|--------------------|------------|----------|----------|--------|-----------|------------|------------|-----------|----------------------------------------|----------------------------------------------|----------------------------------------|----------|-----|-----|----------|-----|
|                                         |       |                    |            |          |          | UT t   | o South I | Fork Cre   | ek         |           |                                        |                                              |                                        |          |     |     |          |     |
|                                         |       |                    |            |          | Seg      | ment/R | leach: 2  | (1022 line | ear feet)  |           |                                        |                                              |                                        |          |     |     |          |     |
| Parameter                               |       | Cr                 | oss Sectio | on 5 Poo | 1        |        |           | Cro        | oss Sectio | n 6 Riffl | e                                      |                                              |                                        |          |     |     |          |     |
| Dimension                               | MY1   | MY2                | MY3        | MY4      | MY5      | MY+    | MY1       | MY2        | MY3        | MY4       | MY5                                    | MY+                                          |                                        |          |     |     |          |     |
| BF Width (ft)                           | 10.5  | 12.2               | 12.3       |          |          |        | 10.4      | 11.3       | 11.5       |           |                                        |                                              |                                        |          |     |     |          |     |
| Floodporne Width (ft)                   | NA    | NA                 | NA         |          |          |        | 50+       | 60+        | 60+        |           |                                        |                                              |                                        |          |     |     |          |     |
| BFCross Sectional Area (ft)             | 11.4  | 13.7               | 14.1       |          |          |        | 12.1      | 11.0       | 12.1       |           |                                        |                                              |                                        |          |     |     |          |     |
| BF Mean Depth (ft)                      | 1.1   | 1.1                | 1.1        |          |          |        | 1.2       | 1.0        | 1.1        |           |                                        |                                              |                                        |          |     |     |          |     |
| Width/Depth Ratio                       | NA    | NA                 | NA         |          |          |        | 9.0       | 11.5       | 10.9       |           |                                        |                                              |                                        |          |     |     |          |     |
| Entrenchment Ratio                      | NA    | NA                 | NA         |          |          |        | 4.8+      | 5.3+       | 5.2+       |           |                                        |                                              |                                        |          |     |     |          |     |
| Bank Height Ratio                       | NA    | NA                 | NA         |          |          |        | 1.0       | 1.0        | 1.5        |           |                                        |                                              |                                        |          |     |     |          |     |
| Wetted Perimeter (ft)                   | 39.0  | 13.8               | 13.9       |          |          |        | 12.3      | 11.9       | 12.2       |           |                                        |                                              |                                        |          |     |     |          |     |
| Hydraulic radius (ft)                   | 0.6   | 1.0                | 1.0        |          |          |        | 1.0       | 0.9        | 1.0        |           |                                        |                                              |                                        |          |     |     |          |     |
| Substrate                               |       |                    |            |          |          |        |           |            |            |           |                                        |                                              |                                        |          |     |     |          |     |
| d50 (mm)                                | sand  | < 0.062            | 2.9        |          |          |        | sand      | < 0.062    | 15         |           |                                        |                                              |                                        |          |     |     |          |     |
| d84 (mm)                                | sand  | 51                 | 51         |          |          |        | sand      | 30         | 28         |           |                                        |                                              |                                        |          |     |     |          |     |
|                                         |       |                    |            |          |          |        |           |            |            |           |                                        |                                              |                                        |          |     |     |          |     |
| Parameter                               | М     | Y-01 (20           | 06)        | MY       | 7-02 (20 | 07)    | М         | IY-03 (20  | 08)        | MY        | 7-04 (20                               | 09)                                          | МУ                                     | 7-05 (20 | 10) | Ν   | /IY+ (20 | 11) |
| Pattern                                 | Min   | Max                | Med        | Min      | Max      | Med    | Min       | Max        | Med        | Min       | Max                                    | Med                                          | Min                                    | Max      | Med | Min | Max      | Med |
| Channel Beltwidth (ft)                  | 14.3  | 64.2               | 27.5       | 21.2     | 54.0     | 30.9   | 18.3      | 50.5       | 28.1       |           |                                        |                                              |                                        |          |     |     |          |     |
| Radius of Curvature (ft)                | 7.9   | 45.5               | 24.8       | 5.2      | 45.5     | 26.7   | 13.2      | 71.8       | 30.0       |           |                                        |                                              |                                        |          |     |     |          |     |
| Meander Wavelenght (ft)                 | 56.6  | 116.7              | 73.4       | 54.4     | 115.6    | 74.1   | 51.9      | 122.3      | 78.7       |           |                                        |                                              |                                        |          |     |     |          |     |
| Meander Width Ratio                     | 1.38  | 6.17               | 2.65       | 1.88     | 4.78     | 2.74   | 1.5878    | 4.38957    | 2.45       |           |                                        |                                              |                                        |          |     |     |          |     |
| Profile                                 |       |                    |            |          |          |        |           |            |            |           |                                        |                                              |                                        |          |     |     |          |     |
| Riffle length (ft)                      | 1.3   | 30.1               | 9.1        | 1.9      | 46.7     | 11.6   | 6.16      | 46.2       | 11.155     |           |                                        |                                              |                                        |          |     |     |          |     |
| Riffle slope (ft/ft)                    | 0.000 | 0.383              | 0.020      | 0.000    | 0.133    | 0.015  | 0.002     | 0.093      | 0.022      |           |                                        |                                              |                                        |          |     |     |          |     |
| Pool length (ft)                        | 7.0   | 53.0               | 20.6       | 5.2      | 52.2     | 16.0   | 7.01      | 68.33      | 17.45      |           |                                        |                                              |                                        |          |     |     |          |     |
| Pool spacing (ft)                       | 22.0  | 188.0              | 56.7       | 7.2      | 77.6     | 26.2   | 8.38      | 88.76      | 36.35      |           |                                        |                                              |                                        |          |     |     |          |     |
| Additional Reach Parameters             |       |                    |            |          |          |        |           |            |            |           |                                        |                                              |                                        |          |     |     |          |     |
| Valley Length (ft)                      |       | 907                |            |          | 906      |        |           | 905        |            |           |                                        |                                              |                                        |          |     |     |          |     |
| Channel Length (ft)                     |       | 1029               |            |          | 1022     |        |           | 1034       |            |           |                                        |                                              |                                        |          |     |     |          |     |
| Sinuosity                               |       | 1.1                |            |          | 1.1      |        |           | 1.1        |            |           |                                        |                                              |                                        |          |     |     |          |     |
| Water Surface Slope (ft/ft)             |       | 0.0081             |            |          | 0.0077   |        |           | 0.0075     |            |           |                                        |                                              |                                        |          |     |     |          |     |
| BF slope (ft/ft)                        |       | 0.0072             |            |          | 0 0074   |        |           | 0.0071     |            |           |                                        |                                              |                                        |          |     |     |          |     |
|                                         |       | 0.0073             |            |          | 0.0074   |        |           | 0.0071     |            |           | ////////////////////////////////////// | <u>/////////////////////////////////////</u> | ////////////////////////////////////// |          |     |     |          |     |
| Rosgen Classification                   |       | 0.0073<br>C5       |            |          | C6       |        |           | C4         |            |           |                                        |                                              |                                        |          |     |     |          |     |
| Rosgen Classification<br>*Habitat Index |       | 0.0073<br>C5<br>NA |            |          | C6<br>NA |        |           | C4<br>NA   |            |           |                                        |                                              |                                        |          |     |     |          |     |

|                             |       |           |           |          |         |                                        |       |           |            |           | Table                                        | IX c. M   | orpholo | ogy and                                      | Hydra    | ulic Mor  | nitoring Summ       | ary  |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
|-----------------------------|-------|-----------|-----------|----------|---------|----------------------------------------|-------|-----------|------------|-----------|----------------------------------------------|-----------|---------|----------------------------------------------|----------|-----------|---------------------|------|------|-----------|-----------|-------|---------|-------|-------|---------|----------|-------|----------|-------|-------|--------|---------|-------|-----|
|                             |       |           |           |          |         |                                        |       |           |            |           |                                              | s         | egment  | /Reach:                                      | 3 (102   | 4 linear  | feet)               |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Parameter                   |       | Cro       | oss Secti | on 7 Poo | ol      |                                        |       | Cro       | oss Sectio | n 8 Riffl | le                                           |           |         | Cro                                          | oss Sect | tion 9 Ri | ffle                |      | Cro  | ss Sectio | n 10 Pool |       |         |       | Cross | s Secti | ion 11 F | Pool  |          |       | Cross | Sectio | n 12 Ri | iffle |     |
| Dimension                   | MY1   | MY2       | MY3       | MY4      | MY5     | MY+                                    | MY1   | MY2       | MY3        | MY4       | MY5                                          | MY+       | MY1     | MY2                                          | MY3      | MY4       | MY5 MY+             | MY1  | MY2  | MY3       | MY4 N     | IY5 N | IY+ M   | 1Y1 1 | MY2   | MY3     | MY4      | MY5 N | MY+ N    | 4Y1 1 | MY2   | AY3    | AY4 N   | MY5 N | MY+ |
| BF Width (ft)               | 12.4  | 11.9      | 12.6      |          |         |                                        | 12.2  | 14.4      | 15.2       |           |                                              |           | 15.3    | 14.2                                         | 16.7     |           |                     | 15   | 17.4 | 18.2      |           |       | 1       | 1.2   | 11.2  | 11.4    |          |       | 1        | 5.9   | 14.4  | 14.4   |         |       |     |
| Floodporne Width (ft)       | NA    | NA        | NA        |          |         |                                        | 50+   | 50+       | 50+        |           |                                              |           | 45+     | 45+                                          | 45+      |           |                     | NA   | NA   | NA        |           |       | 1       | NA    | NA    | NA      |          |       |          | 45+   | 45+   | 45+    |         |       |     |
| BFCross Sectional Area (ft) | 20.4  | 20.6      | 19.9      |          |         |                                        | 14    | 18.8      | 19.0       |           |                                              |           | 21.4    | 20.4                                         | 22.0     |           |                     | 26.6 | 30.5 | 30.4      |           |       |         | 21    | 22.0  | 21.6    |          |       | 1        | 21.6  | 19.7  | 20.0   |         |       |     |
| BF Mean Depth (ft)          | 1.6   | 1.7       | 1.6       |          |         |                                        | 1.2   | 1.3       | 1.3        |           |                                              |           | 1.4     | 1.4                                          | 1.3      |           |                     | 1.8  | 1.7  | 1.7       |           |       |         | 1.9   | 2.0   | 1.9     |          |       |          | 1.4   | 1.4   | 1.4    |         |       |     |
| Width/Depth Ratio           | NA    | NA        | NA        |          |         |                                        | 10.6  | 11.1      | 12.1       |           |                                              |           | 11.0    | 9.9                                          | 12.7     |           |                     | NA   | NA   | NA        |           |       | 1       | NA    | NA    | NA      |          |       | 1        | 1.7   | 10.3  | 10.4   |         |       |     |
| Entrenchment Ratio          | NA    | NA        | NA        |          |         |                                        | 3.2+  | 3.5+      | 3.3+       |           |                                              |           | 3.2+    | 3.2+                                         | 2.7+     |           |                     | NA   | NA   | NA        |           |       | 1       | NA    | NA    | NA      |          |       | 3        | 3.2+  | 3.1+  | 2.9+   |         |       |     |
| Bank Height Ratio           | NA    | NA        | NA        |          |         |                                        | 1.0   | 1.0       | 1.2        |           |                                              |           | 1.0     | 1.0                                          | 1.0      |           |                     | NA   | NA   | NA        |           |       | 1       | NA    | NA    | NA      |          |       |          | 1.0   | 1.0   | 1.0    |         |       |     |
| Wetted Perimeter (ft)       | 14.4  | 13.9      | 15.0      |          |         |                                        | 13.4  | 15.8      | 16.6       |           |                                              |           | 16.5    | 15.5                                         | 18       |           |                     | 16.3 | 19.5 | 20.5      |           |       | 1       | 4.2   | 14.0  | 14.3    |          |       | 1        | 17.6  | 15.6  | 15.8   |         |       |     |
| Hydraulic radius (ft)       | 1.4   | 1.5       | 1.3       |          |         |                                        | 1.0   | 1.2       | 1.2        |           |                                              |           | 1.3     | 1.3                                          | 1.2      |           |                     | 1.4  | 1.6  | 1.5       |           |       |         | 1.6   | 1.6   | 1.5     |          |       |          | 1.3   | 1.3   | 1.3    |         |       |     |
| Substrate                   |       | 0.0.40    |           |          |         |                                        |       | 0.0.10    | 0.0.10     |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| d50 (mm)                    | sand  | <0.062    | 1.8       |          |         |                                        | sand  | <0.062    | <0.062     |           |                                              |           | sand    | 1.6                                          | 1.7      |           |                     | sand | 15   | 9.2       |           |       | //// s  | and   | 1.5   | 11      |          |       | ////// s | and   | 0.35  | 2      |         |       |     |
| d84 (mm)                    | sand  | 11.3      | 20        |          |         | X///////////////////////////////////// | sand  | 26        | 22         |           | X////////                                    |           | sand    | 13.7                                         | 10.9     |           |                     | sand | 59   | 30        |           |       | ///// S | and   | 18    | /0      |          |       | ////// s | and   | 8     | 22     |         |       |     |
|                             | r     |           |           | 1        |         |                                        |       |           |            |           |                                              |           | r       |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Parameter                   | М     | Y-01 (200 | )6)       | MY       | -02 (20 | 07)                                    | N     | 1Y-03 (20 | 08)        | MY        | Y-04 (20                                     | )09)      | MY      | 2-05 (20                                     | 10)      | М         | Y+ (2011)           |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Pattern                     | Min   | Max       | Med       | Min      | Max     | Med                                    | Min   | Max       | Med        | Min       | Max                                          | Med       | Min     | Max                                          | Med      | Min       | Max Med             |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Channel Beltwidth (ft)      | 13.8  | 68.7      | 37.1      | 31.1     | 53.3    | 42.2                                   | 22.0  | 56.6      | 41.0       |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Radius of Curvature (ft)    | 16.8  | 107.9     | 30.9      | 19.5     | 51.5    | 33.6                                   | 19.8  | 114.9     | 37.0       |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Meander Wavelenght (ft)     | 79.3  | 151.6     | 125.3     | 87.9     | 197.5   | 94.2                                   | 60.7  | 155.7     | 117.7      |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Meander Width Ratio         | 0.91  | 4.55      | 2.46      | 2.18     | 3.74    | 2.71                                   | 1.43  | 3.67      | 2.66       |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Profile                     |       |           |           |          |         |                                        |       |           |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Riffle length (ft)          | 2.1   | 40.9      | 12.0      | 2.2      | 43.1    | 11.3                                   | 2.7   | 58.0      | 14.9       |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Riffle slope (ft/ft)        | 0.000 | 0.140     | 0.012     | 0.000    | 0.162   | 0.015                                  | 0.000 | 0.044     | 0.010      |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Pool length (ft)            | 7.0   | 84.0      | 28.8      | 11.0     | 83.0    | 23.9                                   | 9.7   | 102.4     | 21.4       |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Pool spacing (ft)           | 21.0  | 101.0     | 45.8      | 20.8     | 86.9    | 42.3                                   | 18.1  | 89.8      | 36.9       |           | <u>X////////////////////////////////////</u> | X//////// |         | <u>X////////////////////////////////////</u> |          |           | <u>VIIIIIXIIIII</u> |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Additional Reach Parameters |       |           |           |          |         |                                        |       |           |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Valley Length (ft)          |       | 862       |           |          | 863     |                                        |       | 864       |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Channel Length (ft)         |       | 1020      |           |          | 1024    |                                        |       | 1032      |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Sinuosity                   |       | 1.2       |           |          | 1.2     |                                        |       | 1.2       |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Water Surface Slope (ft/ft) |       | 0.0046    |           |          | 0.0049  |                                        |       | 0.0045    |            |           |                                              |           |         |                                              |          |           |                     | 1    |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| BF slope (ft/ft)            |       | 0.0036    |           |          | 0.0039  |                                        |       | 0.0039    |            |           |                                              |           |         |                                              |          |           |                     | 1    |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| Rosgen Classification       |       | C5        |           |          | C5/6    |                                        |       | C5/6      |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| *Habitat Index              |       | NA        |           |          | NA      |                                        |       | NA        |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |
| *Macrobenthos               |       | NA        |           |          | NA      |                                        |       | NA        |            |           |                                              |           |         |                                              |          |           |                     |      |      |           |           |       |         |       |       |         |          |       |          |       |       |        |         |       |     |

|                           |                    | Table B1 a. Stream Problem Areas                                                                                     |                 |
|---------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|
| Easture Issue             | Station numbers    | UT to South Fork, Reach 1                                                                                            | Dhoto           |
| Feature Issue             | Station numbers    | Suspected Cause                                                                                                      | Photo<br>number |
| Aggradation               | 10+10<br>10+18     | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Aggradation               | 10+31.5            | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| I book                    | 10+36              | Dimine encound structure                                                                                             |                 |
| J-NOOK<br>I book          | 10+50              | Piping around structure.                                                                                             |                 |
| J-hook                    | 11+15              | Loose center stone, structure may need extra stone and repositioning of center rock                                  |                 |
| Aggradation               | 11+44              | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| I-book                    | 11+52              | Angle of structure directing flow into outside of meander (right hank)                                               |                 |
| Bank Erosion (right bank) | 11+61              |                                                                                                                      |                 |
| Thesh                     | 11+64.5            | Angle of upstream J-nook is directing flow into unprotected bank and causing erosion.                                |                 |
| J-hook                    | 12+35              | Small amount of water piping around left arm.                                                                        |                 |
|                           | 12+38              | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Aggradation               | 12+77.5<br>12+88   | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Root Wad                  | 12+88              | Bank failure/caving on downsream end of wad around footing.                                                          |                 |
| Cross Vane                | 12+98              | Matting exposed within active channel.                                                                               |                 |
| Aggradation               | 13+05<br>13+26.5   | Area is "washing" out and aggradation now located downstream of j-hook.                                              |                 |
| J-hook                    | 13+26              | Center stone loose; stones on either side of center appear to be missing.                                            |                 |
| Aggradation               | 14+07<br>14+22     | Channel possibly built too wide, naturally narrowing.                                                                | 1               |
| Aggradation               | 14+81              | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| I book                    | 14+92              | Diming/undermining of context store the context store losse                                                          | 2               |
| J-NOOK                    | 14+92              | Piping/undermining of center stone & center stone loose.                                                             | 3               |
|                           | 15+02              | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Aggradation               | 15+29.5<br>15+49.5 | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Rootwad                   | 15+55              | Earth failing/caving all around footing; footing almost completely exposed.                                          | 4               |
| Aggradation               | 15+73.5<br>15+78   | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Aggradation               | 16+00<br>16+26     | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Aggradation               | 16+36<br>16+64     | Channel possibly built too wide, naturally narrowing.                                                                |                 |
|                           | 16+89              |                                                                                                                      |                 |
| J-hook                    | 16+89              | Gap in structure (i.e. missing center rock).                                                                         |                 |
| J-nook<br>Aggradation     | 17+29              |                                                                                                                      |                 |
|                           | 17+54              | Channel possibly built too wide, naturally narrowing.                                                                |                 |
| Bank Erosion (right bank) | 17+74              | Healing over, cause of old erosion was angle of upstream j-hook.                                                     |                 |
| Bank Erosion (left bank)  | 18+26              | Lack of bank protection on outside of meander                                                                        | n               |
|                           | 18+31.5            | Lack of bank protection on outside of meander.                                                                       | Z               |
| Side Bar (left)           | 18+51              | Small sedment bar on outside of meander.                                                                             |                 |
| Crossvane                 | 18+53              | Piping/undermining around center stone.                                                                              |                 |
| Bank Erosion (right bank) | 18+00.3            | upstream of structure.                                                                                               |                 |
| J-hook                    | 18+70              | Installed too high, ponding during high flows, piping b/t center stone bank.                                         |                 |
| Bank Erosion (left bank)  | 18+87.5            | Piping around j-hook causing bank scour directly upstream.                                                           |                 |
| Lhook                     | 18+89              | Installed too high undermining/nining under structure caucing scour                                                  |                 |
| Bank Erosion (right bank) | 10+00              | Section appears to be downcutting (i.e. incising), leaving weakened banks. The incision                              |                 |
|                           | 10+16              | is possibly due to channel scour downstream (i.e. directly upstream of downstream j-<br>book) that created a headcut |                 |
| Bank Frosion (left bank)  | 19+10              | Section appears to be downoutting (i.e. ingising) leaving weathered have. The '                                      |                 |
| Dank Erosion (iett bank)  | 19+04              | is possibly due to channel scour downstream (i.e. directly upstream of downstream j-                                 |                 |
|                           | 19+11              | Inook) that created a headcut. This has resulted in piping/undermining around left arm of J-hook.                    |                 |
| J-hook                    | 19+10              | Installed too high, scour/piping under structure and around structure arm.                                           |                 |
| Bank Erosion (left bank)  | 19+20.5            | Pining around i-hook causing hank scour/undercutting directly unstream                                               |                 |
|                           | 19+26              | a spine around j nook causing bank scour/undercutting uncerty upsucani.                                              |                 |
| J-hook                    | 19+26              | Installed too high, undermining/piping under structure causing scour.                                                |                 |
| J-HOOK<br>Rootwad         | 19+03              | Bank failing behind structure, possibly installed too high                                                           |                 |
| Aggradation               | 20+14              |                                                                                                                      |                 |
|                           | 20+57              | Channel possibly built too wide, naturally narrowing.                                                                |                 |

|                           |                           | Table B1 b. Stream Problem Areas                                                                                                       |                 |
|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                           |                           | I and D D. Sulvani Flohem Aleas                                                                                                        |                 |
| Feature Issue             | Station numbers           | Suspected Cause                                                                                                                        | Photo<br>number |
| Aggradation               | 10+18<br>10+30            | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Aggradation               | 11+13.5<br>11+19          | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Crossvane                 | 11+19                     | Piping around structure, pool behind structure filling in with sediment deposit on right side.                                         |                 |
| Aggradation               | 11+25.5<br>11+28          | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Bank Erosion (left bank)  | 11+28.5<br>11+34          | Inadequate protection on outside of meander.                                                                                           | 3               |
| Aggradation               | 11+53<br>11+87            | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Aggradation               | 12+41.5<br>12+48.5        | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Aggradation               | 12+89<br>13+01            | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Bank Erosion (right bank) | 13+03.5<br>13+06          | Flow directed into bank from structure directly upstream and rootwad inadequate to protect banl                                        | c.              |
| Rootwad (severe)          | 13+05                     | Exposed, installed too high, bank failures caving in and around structure footing.                                                     |                 |
| Aggradation               | 13+96<br>14+14.5          | Riffle narrowing, channel possibly built too wide, naturally narrowing.                                                                | 1               |
| Rootwad                   | 14+27                     | Some evidence of undercutting, possibly installed too high.                                                                            |                 |
| Aggradation               | 14+38<br>14+53            | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Rootwad                   | 15+07                     | Bank failure around structure.                                                                                                         |                 |
| Bank Erosion (right bank) | 15+07<br>15+11            | Possible improper installation of rootwads causing bank to cave in around structures, however area is healing over with new vegetation |                 |
| Rootwad                   | 15+11                     | Bank failure around structure                                                                                                          |                 |
| Central Bar               | 15+24                     | Sediment har in pool                                                                                                                   |                 |
| Aggradation               | 16+13.5<br>16+20          | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Aggradation               | 16+20<br>16+66<br>16+81.5 | Channel possibly built too wide, naturally narrowing.                                                                                  |                 |
| Side bar (left)           | 16+92                     | Sediment bar along riffle on straight section.                                                                                         |                 |
| Crossvane                 | 18+67                     | Missing center rock.                                                                                                                   |                 |
| Crossvane                 | 20+33.78                  | Piping around structure.                                                                                                               | 2               |

|                           |                  | Table B1 c. Stream Problem Areas                                                                                                                                                                                                   |                 |
|---------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                           |                  | UT to South Fork, Reach 3                                                                                                                                                                                                          |                 |
| Feature Issue             | Station numbers  | Suspected Cause                                                                                                                                                                                                                    | Photo<br>number |
| Bank Erosion (Right Bank) | 11+35<br>11+39.5 | Soil type or lack of vegetation. Perhaps built too wide and is narrowing.                                                                                                                                                          |                 |
| Aggradation               | 13+58<br>13+65   | Channel possibly built too wide, naturally narrowing.                                                                                                                                                                              |                 |
| Aggradation               | 15+37<br>15+53   | Channel possibly built too wide, naturally narrowing.                                                                                                                                                                              |                 |
| Aggradation               | 15+88<br>15+94.5 | Channel possibly built too wide, naturally narrowing.                                                                                                                                                                              |                 |
| Bank Erosion (Left Bank)  | 16+15<br>16+28   | Lack of protective vegetation and/or soil stability around structure on outside of meander.                                                                                                                                        |                 |
| Side Bar (right)          | 18+29<br>18+42   | Sediment bar constricting channel below crossvane.                                                                                                                                                                                 | 3               |
| Bank Erosion (Left Bank)  | 19+30<br>19+50   | Lack of protection on outside of meander in area of highest shear stress. J-hook placed too far<br>downstream along meander. Area currently healing but needs additional protective measures t<br>prevent future erosional events. | 2               |
| J-hook                    | 19+45            | Orginal structure placement should have been upstream near start of adjacent bank erosion.<br>The result may have prevented adjacent bank erosion (left).                                                                          | 1               |

|                         | Table B2 a. Visual Morphologic                                                | cal Stability As                                                | sessment                        |                                                   |                                        |                                         |
|-------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|---------------------------------------------------|----------------------------------------|-----------------------------------------|
|                         | UT to South                                                                   | Fork                                                            |                                 |                                                   |                                        |                                         |
| Feature Category        | Metric (per As-built and reference baselines)                                 | (1152 feet)<br>(#Stable)<br>Number<br>Performing<br>as Intended | Total<br>Number per<br>As-built | Total<br>Number /<br>feet in<br>unstable<br>state | % Performing<br>in Stable<br>Condition | Feature<br>Performance<br>Mean or Total |
| A. Riffles              | 1. Present                                                                    | 21                                                              | 28                              | NA                                                | 75%                                    |                                         |
|                         | 2. Armor stable                                                               | 19                                                              | 28                              | NA                                                | 68%                                    |                                         |
|                         | 3. Facet grade appears stable                                                 | 19                                                              | 28                              | NA                                                | 68%                                    |                                         |
|                         | 4. Minimal evidence of embedding/fining                                       | 12                                                              | 28                              | NA                                                | 43%                                    |                                         |
|                         | 5. Length appropriate                                                         | 17                                                              | 28                              | NA                                                | 61%                                    | 63%                                     |
| B. Pools                | 1. Present                                                                    | 24                                                              | 25                              | NA                                                | 96%                                    |                                         |
|                         | 2. Sufficiently deep                                                          | 24                                                              | 25                              | NA                                                | 96%                                    |                                         |
|                         | 3. Length appropriate                                                         | 17                                                              | 25                              | NA                                                | 68%                                    | 87%                                     |
| C. Thalweg              | 1. Upstream of meander bend (run/inflection) centering                        | 13                                                              | 13                              | NA                                                | 100%                                   |                                         |
|                         | 2. Downstream of meander (glide/inflection) centering                         | 13                                                              | 13                              | NA                                                | 100%                                   | 100%                                    |
| D. Meanders             | 1. Outer bend in state of limited/controlled erosion                          | 21                                                              | 26                              | NA                                                | 81%                                    |                                         |
|                         | 2. Of those eroding, # w/concomitant point bar formation                      | 1                                                               | 5                               | NA                                                | 20%                                    |                                         |
|                         | 3. Apparent Rc within specifications                                          | 24                                                              | 26                              | NA                                                | 92%                                    |                                         |
|                         | 4. Sufficient floodplain access and relief                                    | 26                                                              | 26                              | NA                                                | 100%                                   | 73%                                     |
| E. Bed General          | 1. General channel bed aggradation areas (bar formation)                      | NA                                                              | NA                              | 16/236                                            | 78%                                    |                                         |
|                         | 2. Channel bed degradation - areas of increasing down cutting or head cutting | NA                                                              | NA                              | 1/16                                              | 98%                                    | 88%                                     |
| F. Bank Condition       | 1. Actively eroding, wasting, or slumping bank                                | NA                                                              | NA                              | 8/45.5                                            | 98%                                    | 98%                                     |
| G. Vanes / J Hooks etc. | 1. Free of back or arm scour                                                  | 49                                                              | 50                              | NA                                                | 98%                                    |                                         |
|                         | 2. Height appropriate                                                         | 46                                                              | 50                              | NA                                                | 92%                                    |                                         |
|                         | 3. Angle and geometry appear appropriate                                      | 49                                                              | 50                              | NA                                                | 98%                                    |                                         |
|                         | 4. Free of piping or other structural failures                                | 36                                                              | 50                              | NA                                                | 72%                                    | 90%                                     |
| H. Wads and Boulders    | 1. Free of scour                                                              | 6                                                               | 8                               | NA                                                | 75%                                    |                                         |
|                         | 2. Footing stable                                                             | 5                                                               | 8                               | NA                                                | 63%                                    | 69%                                     |
|                         |                                                                               |                                                                 |                                 |                                                   |                                        |                                         |

|                         | Table B2 b. Visual Morphologic                                                | cal Stability As                                 | ssessment                       |                                                   |                                        |                                         |
|-------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------|---------------------------------------------------|----------------------------------------|-----------------------------------------|
|                         | UT to South                                                                   | Fork                                             |                                 |                                                   |                                        |                                         |
| Feature Category        | Metric (per As-built and reference baselines)                                 | (#Stable)<br>Number<br>Performing<br>as Intended | Total<br>Number per<br>As-built | Total<br>Number /<br>feet in<br>unstable<br>state | % Performing<br>in Stable<br>Condition | Feature<br>Performance<br>Mean or Total |
| A. Riffles              | 1. Present                                                                    | 12                                               | 13                              | NA                                                | 92%                                    |                                         |
|                         | 2. Armor stable                                                               | 10                                               | 13                              | NA                                                | 77%                                    |                                         |
|                         | 3. Facet grade appears stable                                                 | 10                                               | 13                              | NA                                                | 77%                                    |                                         |
|                         | 4. Minimal evidence of embedding/fining                                       | 7                                                | 13                              | NA                                                | 54%                                    |                                         |
|                         | 5. Length appropriate                                                         | 11                                               | 13                              | NA                                                | 85%                                    | 77%                                     |
| B. Pools                | 1. Present                                                                    | 13                                               | 14                              | NA                                                | 93%                                    |                                         |
|                         | 2. Sufficiently deep                                                          | 13                                               | 14                              | NA                                                | 93%                                    |                                         |
|                         | 3. Length appropriate                                                         | 11                                               | 14                              | NA                                                | 79%                                    | 88%                                     |
| C. Thalweg              | 1. Upstream of meander bend (run/inflection) centering                        | 7                                                | 8                               | NA                                                | 88%                                    |                                         |
|                         | 2. Downstream of meander (glide/inflection) centering                         | 7                                                | 7                               | NA                                                | 100%                                   | 94%                                     |
| D. Meanders             | 1. Outer bend in state of limited/controlled erosion                          | 12                                               | 14                              | NA                                                | 86%                                    |                                         |
|                         | 2. Of those eroding, # w/concomitant point bar formation                      | 1                                                | 2                               | NA                                                | 50%                                    |                                         |
|                         | 3. Apparent Rc within specifications                                          | 13                                               | 14                              | NA                                                | 93%                                    |                                         |
|                         | 4. Sufficient floodplain access and relief                                    | 14                                               | 14                              | NA                                                | 100%                                   | 82%                                     |
| E. Bed General          | 1. General channel bed aggradation areas (bar formation)                      | NA                                               | NA                              | 12/136                                            | 87%                                    |                                         |
|                         | 2. Channel bed degradation - areas of increasing down cutting or head cutting | NA                                               | NA                              | 0/0                                               | 100%                                   | 93%                                     |
| F. Bank Condition       | 1. Actively eroding, wasting, or slumping bank                                | NA                                               | NA                              | 3/12                                              | 99%                                    | 99%                                     |
| G. Vanes / J Hooks etc. | 1. Free of back or arm scour                                                  | 28                                               | 28                              | NA                                                | 100%                                   |                                         |
|                         | 2. Height appropriate                                                         | 28                                               | 28                              | NA                                                | 100%                                   |                                         |
|                         | 3. Angle and geometry appear appropriate                                      | 28                                               | 28                              | NA                                                | 100%                                   |                                         |
|                         | 4. Free of piping or other structural failures                                | 25                                               | 28                              | NA                                                | 89%                                    | 97%                                     |
| H. Wads and Boulders    | 1. Free of scour                                                              | 7                                                | 11                              | NA                                                | 64%                                    |                                         |
|                         | 2. Footing stable                                                             | 10                                               | 11                              | NA                                                | 91%                                    | 77%                                     |
|                         |                                                                               |                                                  |                                 |                                                   |                                        |                                         |

| Table B2 c. Visual Morphological Stability Assessment<br>UT to South Fork |                                                                                  |    |    |        |      |      |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|----|----|--------|------|------|
|                                                                           |                                                                                  |    |    |        |      |      |
| A. Riffles                                                                | 1. Present                                                                       | 16 | 16 | NA     | 100% |      |
|                                                                           | 2. Armor stable                                                                  | 15 | 16 | NA     | 94%  |      |
|                                                                           | 3. Facet grade appears stable                                                    | 15 | 16 | NA     | 94%  |      |
|                                                                           | 4. Minimal evidence of embedding/fining                                          | 12 | 16 | NA     | 75%  |      |
|                                                                           | 5. Length appropriate                                                            | 16 | 16 | NA     | 100% | 93%  |
| B. Pools                                                                  | 1. Present                                                                       | 17 | 19 | NA     | 89%  |      |
|                                                                           | 2. Sufficiently deep                                                             | 17 | 19 | NA     | 89%  |      |
|                                                                           | 3. Length appropriate                                                            | 13 | 19 | NA     | 68%  | 82%  |
| C. Thalweg                                                                | 1. Upstream of meander bend (run/inflection) centering                           | 6  | 6  | NA     | 100% |      |
|                                                                           | 2. Downstream of meander (glide/inflection) centering                            | 7  | 7  | NA     | 100% | 100% |
| D. Meanders                                                               | 1. Outer bend in state of limited/controlled erosion                             | 12 | 14 | NA     | 86%  |      |
|                                                                           | 2. Of those eroding, # w/concomitant point bar formation                         | 0  | 2  | NA     | 0%   |      |
|                                                                           | 3. Apparent Rc within specifications                                             | 12 | 14 | NA     | 100% |      |
|                                                                           | 4. Sufficient floodplain access and relief                                       | 14 | 14 | NA     | 100% | 72%  |
| E. Bed General                                                            | 1. General channel bed aggradation areas (bar formation)                         | NA | NA | 4/42.5 | 96%  |      |
|                                                                           | 2. Channel bed degradation - areas of increasing down<br>cutting or head cutting | NA | NA | 0/0    | 100% | 98%  |
| F. Bank Condition                                                         | 1. Actively eroding, wasting, or slumping bank                                   | NA | NA | 3/37.5 | 98%  | 98%  |
| G. Vanes / J Hooks etc.                                                   | 1. Free of back or arm scour                                                     | 29 | 30 | NA     | 97%  |      |
|                                                                           | 2. Height appropriate                                                            | 30 | 30 | NA     | 100% |      |
|                                                                           | 3. Angle and geometry appear appropriate                                         | 29 | 30 | NA     | 97%  |      |
|                                                                           | 4. Free of piping or other structural failures                                   | 30 | 30 | NA     | 100% | 98%  |
| H. Wads and Boulders                                                      | 1. Free of scour                                                                 | 10 | 10 | NA     | 100% |      |
|                                                                           | 2. Footing stable                                                                | 10 | 10 | NA     | 100% | 100% |
|                                                                           |                                                                                  |    |    |        |      |      |

## APPENDIX B4

# STREAM CROSS-SECTIONS

## **APPENDIX B6**

# STREAM PEBBLE COUNTS


























| Field Crew:     | IPJ and PDB |
|-----------------|-------------|
| Stream Reach:   | 1           |
| Drainage Area:  | 0.15        |
| Date:           | Mar-08      |
| Monitoring Year | 3           |

| STATION | ELEVATION | NOTES |        |        |                  |
|---------|-----------|-------|--------|--------|------------------|
| (Feet)  | (Feet)    | _     |        |        | Bankfull         |
| 0.00    | 559.46    | Ι     |        |        | Hydraulic Geomet |
| 0.16    | 559.31    | T     |        | Width  | Depth            |
| 10.05   | 559.27    | Ι     |        | (Feet) | (Feet)           |
| 19.90   | 558.97    | Ι     |        | 0.00   | 0.00             |
| 29.89   | 558.59    | T     |        | 0.27   | 0.02             |
| 40.20   | 558.49    | 1     |        | 0.84   | 0.15             |
| 40.65   | 558.46    | 4007  |        | 0.79   | 0.38             |
| 41.47   | 558.38    | 4005  |        | 1.77   | 1.09             |
| 42.31   | 558.25    | T     |        | 0.46   | 1.09             |
| 43.09   | 558.02    | 1     |        | 0.41   | 1.43             |
| 44.87   | 557.31    | 1     |        | 0.63   | 1.65             |
| 45.33   | 557.30    | 1     |        | 1.21   | 1.77             |
| 45.74   | 556.97    | 4003  |        | 0.97   | 1.96             |
| 46.37   | 556.75    | 1     |        | 0.98   | 2.06             |
| 47.58   | 556.63    | 1     |        | 0.20   | 1.69             |
| 48.55   | 556.44    | 1     |        | 0.48   | 1.69             |
| 49.53   | 556.34    | 4002  |        | 0.15   | 1.45             |
| 49.74   | 556.70    | 1     |        | 0.28   | 0.55             |
| 50.21   | 556.70    | 1     |        | 1.13   | 0.45             |
| 50.36   | 556.94    | 4003  |        | 0.50   | 0.07             |
| 50.64   | 557.85    | 1     |        | 0.85   | 0.04             |
| 51.78   | 557.95    | 1     |        | 0.67   | 0.00             |
| 52.28   | 558.32    | 1     | TOTALS | 12.60  |                  |
| 53.13   | 558.36    | 4006  |        |        |                  |
| 54.89   | 558.49    | 4008  |        |        |                  |
| 60.49   | 558.75    | 1     |        | 5      | SUMMARY DATA     |
| 70.07   | 558.98    | 1     |        | A(BKF) | 11.86            |
| 80.00   | 559.40    | 1     |        | W(BKF) | 12.60            |

559.65

560.47 560.93

90.02 99.91

99 95

|     |        | Bankfull           |           |           |
|-----|--------|--------------------|-----------|-----------|
|     |        | Hydraulic Geometry |           |           |
|     | Width  | Depth              | Perimeter | Area      |
|     | (Feet) | (Feet)             | (Feet)    | (Sq. Ft.) |
|     | 0.00   | 0.00               | 0.00      | 0.00      |
|     | 0.27   | 0.02               | 0.27      | 0.00      |
|     | 0.84   | 0.15               | 0.85      | 0.07      |
|     | 0.79   | 0.38               | 0.82      | 0.21      |
|     | 1.77   | 1.09               | 1.91      | 1.30      |
|     | 0.46   | 1.09               | 0.46      | 0.50      |
|     | 0.41   | 1.43               | 0.53      | 0.52      |
|     | 0.63   | 1.65               | 0.66      | 0.96      |
|     | 1.21   | 1.77               | 1.22      | 2.07      |
|     | 0.97   | 1.96               | 0.99      | 1.80      |
|     | 0.98   | 2.06               | 0.99      | 1.97      |
|     | 0.20   | 1.69               | 0.42      | 0.38      |
|     | 0.48   | 1.69               | 0.48      | 0.81      |
|     | 0.15   | 1.45               | 0.28      | 0.24      |
|     | 0.28   | 0.55               | 0.95      | 0.28      |
|     | 1.13   | 0.45               | 1.14      | 0.57      |
|     | 0.50   | 0.07               | 0.63      | 0.13      |
|     | 0.85   | 0.04               | 0.85      | 0.05      |
|     | 0.67   | 0.00               | 0.67      | 0.01      |
| ALS | 12.60  |                    | 14.12     | 11.86     |

| SUMMARY DATA |       |  |  |  |
|--------------|-------|--|--|--|
| A(BKF)       | 11.86 |  |  |  |
| W(BKF)       | 12.60 |  |  |  |
| Max d        | 2.06  |  |  |  |
| Mean d       | 0.94  |  |  |  |
| Wet. P       | 14.12 |  |  |  |
| Hyd. R       | 0.84  |  |  |  |

Bankfull datum\* = 558.40

\*Datum reset during Monitoring Year 2.



### Appendix B4







| Field Crew:<br>Stream Reach:<br>Drainage Area:<br>Date:<br>Monitoring Year | IPJ and PDB<br>2<br>0.38<br>Mar-08<br>3 |         |                      |                    |                  |                 |                                     |
|----------------------------------------------------------------------------|-----------------------------------------|---------|----------------------|--------------------|------------------|-----------------|-------------------------------------|
| STATION                                                                    | ELEVATION                               | NOTES   | Г                    |                    | Bankfu           | ull/Top of Bank | κ.                                  |
| (Feet)                                                                     | (Feet)                                  |         |                      |                    | Hydra            | ulic Geometry   |                                     |
| 0.00                                                                       | 534.64                                  |         |                      | Width              | Depth            | Perimeter       | Area                                |
| 0.02                                                                       | 534.20                                  |         |                      | (Feet)             | (Feet)           | (Feet)          | (Sq. Ft.)                           |
| 9.56                                                                       | 532.92                                  |         |                      | 0.00               | 0.00             | 0.00            | 0.00                                |
| 15.43                                                                      | 533.28                                  |         |                      | 1.47               | 0.47             | 1.55            | 0.34                                |
| 19.89                                                                      | 533.21                                  |         |                      | 1.12               | 1.17             | 1.32            | 0.92                                |
| 22.09                                                                      | 533.26                                  |         |                      | 0.30               | 1.20             | 0.30            | 0.35                                |
| 23.25                                                                      | 532.98                                  |         |                      | 0.40               | 1.52             | 0.51            | 0.54                                |
| 25.67                                                                      | 532.27                                  |         |                      | 1.19               | 1.60             | 1.19            | 1.85                                |
| 26.80                                                                      | 531.57                                  |         |                      | 0.80               | 1.70             | 0.81            | 1.32                                |
| 27.10                                                                      | 531.54                                  |         |                      | 0.24               | 1.79             | 0.26            | 0.42                                |
| 27 49                                                                      | 531 23                                  |         |                      | 0.09               | 1 78             | 0.09            | 0.17                                |
| 28.68                                                                      | 531.14                                  | IFW     |                      | 0.27               | 1 74             | 0.28            | 0.48                                |
| 29.48                                                                      | 531.04                                  |         |                      | 0.42               | 1.66             | 0.43            | 0.72                                |
| 29.10                                                                      | 530.95                                  |         |                      | 0.73               | 1.60             | 0.73            | 1 21                                |
| 20.72                                                                      | 530.96                                  | Thalwea |                      | 1 44               | 1 14             | 1 53            | 2.02                                |
| 30.09                                                                      | 531.00                                  | manweg  |                      | 1.44               | 0.79             | 1.00            | 1 11                                |
| 30.51                                                                      | 531.08                                  |         |                      | 0.51               | 0.75             | 0.59            | 0.33                                |
| 31.24                                                                      | 531.07                                  | REW     |                      | 1 36               | 0.00             | 1 45            | 0.34                                |
| 32.68                                                                      | 531.61                                  |         | TOTALS               | 11.50              | 0.00             | 12.23           | 12 12                               |
| 32.00                                                                      | 521.05                                  |         | TOTALS               | 11.50              |                  | 12.20           | 12.12                               |
| 3/ 3/                                                                      | 532.24                                  |         |                      |                    |                  |                 |                                     |
| 25 70                                                                      | 522.74                                  | BKE     | 511                  |                    |                  |                 | Rankfull datum* - 522 74            |
| 39.69                                                                      | 522.14                                  | TOP     | (BKE)                | 12 12              |                  | 601             | *Datum reset during Monitoring Year |
| 30.00                                                                      | 522.19                                  | TOB     |                      | 11.12              |                  | 12.22           | Datum reset during Monitoring real  |
| 40.94                                                                      | 533.10                                  |         | W(BRI)               | 1 70               | Uvdroulio Podiuo | 12.23           |                                     |
| 49.04                                                                      | 533.40                                  |         | Moon d               | 1.79               | Motted Derimeter | 0.99            | -1                                  |
| 59.70                                                                      | 534.30                                  |         |                      | 10.00              | Area             |                 |                                     |
| 09.70                                                                      | 554.76                                  |         | VV/D<br>Donk Lloight | 10.90              | Alea=            | · A             |                                     |
|                                                                            |                                         |         | Bank Height          | 2.16               | vviatn=          | NV D            |                                     |
|                                                                            |                                         |         | Entrenchment         | 5.2+               | Depth=           |                 |                                     |
|                                                                            |                                         |         | Stream Type          |                    | Bankfull=        | BKF             | -                                   |
|                                                                            |                                         | 1       | Area from Rural Reg  | ional Curv         | /e               | 11.5            | _                                   |
|                                                                            |                                         |         | Cross Sectio         | n #6 (U)<br>Riffle | ſ South Fork)    |                 |                                     |





| Field Crew:     | IPJ and PDB | 1       |
|-----------------|-------------|---------|
| Stream Reach:   | 3           |         |
| Drainage Area:  | 1.05        |         |
| Date:           | Mar-07      |         |
| Monitoring Year | 3           |         |
|                 |             |         |
| STATION         | ELEVATION   | NOTES   |
| (Feet)          | (Feet)      | 7       |
| 0.00            | 531.17      | -       |
| 0.13            | 530.64      | _       |
| 3.02            | 529.88      | _       |
| 9.23            | 529.40      |         |
| 16.97           | 529.29      | TOB     |
| 19.07           | 529.03      |         |
| 20.06           | 528.83      | BKF     |
| 21.26           | 528.63      | _       |
| 23.73           | 527.96      | _       |
| 24.55           | 527.76      |         |
| 24.95           | 527.41      |         |
| 25.68           | 526.67      | LEW     |
| 26.06           | 526.20      |         |
| 27.10           | 525.96      | Thalweg |
| 27.62           | 526.02      |         |
| 28.35           | 526.33      |         |
| 29.61           | 526.61      | REW     |
| 29.85           | 526.87      |         |
| 30.78           | 527.15      |         |
| 31.61           | 527.75      |         |
| 35.25           | 528.73      |         |
| 37.21           | 529.27      | ]       |
| 38.71           | 529.57      |         |
| 42.41           | 529.64      | 1       |
| 46.20           | 529.74      | 7       |
| 49.95           | 530.54      | 7       |
| 49.97           | 530.99      | 1       |
|                 |             | _       |

|        |        | Bankfu<br>Hydra | III/Top of Bank |           |
|--------|--------|-----------------|-----------------|-----------|
|        | Width  | Depth           | Perimeter       | Area      |
|        | (Feet) | (Feet)          | (Feet)          | (Sq. Ft.) |
|        | 0.00   | 0.00            | 0.00            | 0.00      |
|        | 0.96   | 0.15            | 0.97            | 0.07      |
|        | 2.48   | 0.83            | 2.57            | 1.22      |
|        | 0.82   | 1.02            | 0.84            | 0.76      |
|        | 0.40   | 1.38            | 0.53            | 0.48      |
|        | 0.73   | 2.12            | 1.04            | 1.27      |
|        | 0.38   | 2.59            | 0.60            | 0.89      |
|        | 1.05   | 2.83            | 1.07            | 2.83      |
|        | 0.51   | 2.77            | 0.52            | 1.43      |
|        | 0.73   | 2.45            | 0.79            | 1.91      |
|        | 1.26   | 2.18            | 1.29            | 2.93      |
|        | 0.24   | 1.92            | 0.35            | 0.48      |
|        | 0.93   | 1.64            | 0.97            | 1.65      |
|        | 0.83   | 1.04            | 1.03            | 1.11      |
|        | 3.65   | 0.05            | 3.78            | 1.99      |
|        | 0.20   | 0.00            | 0.20            | 0.01      |
| TOTALS | 15.15  |                 | 16.56           | 19.03     |

| <u>SUMMARY DATA (BANKFULL)</u> |           |                   |       |  |  |  |  |
|--------------------------------|-----------|-------------------|-------|--|--|--|--|
| A(BKF)                         | 19.03     | W(FPA)            | 50+   |  |  |  |  |
| W(BKF)                         | 15.15     | WP                | 16.56 |  |  |  |  |
| Max d                          | 2.83      | Hydraulic Radius  | 1.15  |  |  |  |  |
| Mean d                         | 1.26      | Wetted Perimeter= | WP    |  |  |  |  |
| W/D                            | 12.06     | Area=             | A     |  |  |  |  |
| Bank Height                    | 3.34      | Width=            | W     |  |  |  |  |
| Entrenchment                   | 3.3+      | Depth=            | D     |  |  |  |  |
| Stream Type                    | С         | Bankfull=         | BKF   |  |  |  |  |
| rea from Rural Regi            | onal Curv | e                 | 22.7  |  |  |  |  |
|                                |           |                   |       |  |  |  |  |

Bankfull datum\* = 528.79 \*Datum reset during Monitoring Year 2.



A

| Field Crew:                       | IPJ and PDB                             |  |
|-----------------------------------|-----------------------------------------|--|
| Stream Reach:                     | 3                                       |  |
| Drainage Area:                    | 1.05                                    |  |
| Date:                             | Mar-07                                  |  |
| Monitoring Year                   | 3                                       |  |
| monitoring real                   | 0                                       |  |
| monitoring real                   | 0                                       |  |
| STATION                           | ELEVATION                               |  |
| STATION<br>(Feet)                 | ELEVATION<br>(Feet)                     |  |
| STATION<br>(Feet)<br>0.00         | ELEVATION<br>(Feet)<br>529.10           |  |
| STATION<br>(Feet)<br>0.00<br>0.00 | ELEVATION<br>(Feet)<br>529.10<br>528.48 |  |

NOTES

| 0.00  | 528.48 |         |
|-------|--------|---------|
| 3.28  | 528.11 |         |
| 6.79  | 528.15 | ТОВ     |
| 9.73  | 527.95 |         |
| 10.10 | 527.92 |         |
| 12.48 | 527.18 |         |
| 13.23 | 526.79 |         |
| 14.48 | 525.73 | LEW     |
| 15.24 | 525.43 |         |
| 16.28 | 525.39 | Thalweg |
| 17.30 | 525.51 |         |
| 18.25 | 525.54 |         |
| 18.39 | 525.75 | REW     |
| 19.08 | 525.86 |         |
| 19.76 | 526.03 |         |
| 20.13 | 526.45 |         |
| 21.33 | 526.92 |         |
| 25.02 | 528.30 |         |
| 26.99 | 528.78 |         |
| 30.77 | 528.98 |         |
| 32.17 | 528.89 |         |
| 33.68 | 528.68 |         |
| 39.72 | 529.27 |         |
| 43.54 | 529.70 |         |
| 44.84 | 529.81 |         |
| 44.90 | 530.14 |         |

|        |        | Bankfu | III/Top of Bank |           |
|--------|--------|--------|-----------------|-----------|
|        |        | Hydra  | ulic Geometry   |           |
|        | Width  | Depth  | Perimeter       | Area      |
|        | (Feet) | (Feet) | (Feet)          | (Sq. Ft.) |
|        | 0.00   | 0.00   | 0.00            | 0.00      |
|        | 2.03   | 0.14   | 2.03            | 0.14      |
|        | 0.37   | 0.17   | 0.37            | 0.06      |
|        | 2.38   | 0.91   | 2.49            | 1.29      |
|        | 0.75   | 1.31   | 0.85            | 0.83      |
|        | 1.25   | 2.37   | 1.64            | 2.30      |
|        | 0.76   | 2.66   | 0.82            | 1.92      |
|        | 1.03   | 2.70   | 1.03            | 2.78      |
|        | 1.03   | 2.58   | 1.03            | 2.71      |
|        | 0.94   | 2.55   | 0.95            | 2.43      |
|        | 0.14   | 2.34   | 0.25            | 0.35      |
|        | 0.69   | 2.23   | 0.70            | 1.57      |
|        | 0.69   | 2.07   | 0.70            | 1.47      |
|        | 0.37   | 1.65   | 0.56            | 0.68      |
|        | 1.20   | 1.17   | 1.29            | 1.69      |
|        | 3.07   | 0.00   | 3.29            | 1.80      |
| TOTALS | 16.70  |        | 18.00           | 22.01     |
|        |        |        |                 |           |

| SUMMARY DATA (BANKFULL) |           |                   |       |  |  |  |  |
|-------------------------|-----------|-------------------|-------|--|--|--|--|
| A(BKF)                  | 22.01     | W(FPA)            | 45+   |  |  |  |  |
| W(BKF)                  | 16.70     | WP                | 18.00 |  |  |  |  |
| Max d                   | 2.70      | Hydraulic Radius  | 1.22  |  |  |  |  |
| Mean d                  | 1.32      | Wetted Perimeter= | WP    |  |  |  |  |
| W/D                     | 12.67     | Area=             | A     |  |  |  |  |
| Bank Height             | 2.76      | Width=            | W     |  |  |  |  |
| Entrenchment            | 2.7+      | Depth=            | D     |  |  |  |  |
| Stream Type             | С         | Bankfull=         | BKF   |  |  |  |  |
| Area from Rural Regi    | onal Curv | e                 | 22.7  |  |  |  |  |

**Bankfull datum\* = 528.09** \*Datum reset during Monitoring Year 2.



| Field Crew:     | IPJ and PDB |         |
|-----------------|-------------|---------|
| Stream Reach:   | 3           |         |
| Drainage Area:  | 1.05        |         |
| Date:           | Mar-07      |         |
| Monitoring Year | 3           |         |
|                 |             | _       |
| STATION         | ELEVATION   | NOTES   |
| (Feet)          | (Feet)      | _       |
| 0.00            | 528.60      |         |
| 0.01            | 528.07      |         |
| 5.76            | 527.45      |         |
| 9.89            | 527.37      |         |
| 17.47           | 527.24      |         |
| 18.69           | 527.05      |         |
| 20.21           | 526.60      |         |
| 20.96           | 526.40      |         |
| 25.27           | 525.33      |         |
| 27.37           | 524.59      |         |
| 27.94           | 523.98      | LEW     |
| 28.59           | 523.59      |         |
| 29.76           | 523.20      |         |
| 30.73           | 523.08      | Thalweg |
| 31.82           | 523.25      |         |
| 32.23           | 523.70      |         |
| 32.62           | 523.36      |         |
| 33.46           | 523.49      |         |
| 33.69           | 524.08      | REW     |
| 33.83           | 524.25      |         |
| 34.11           | 524.39      |         |
| 34.23           | 524.87      |         |
| 36.17           | 525.41      |         |
| 38.10           | 526.44      |         |
| 38.97           | 526.60      | тов     |
| 39.97           | 526.64      |         |
| 47.51           | 526.56      |         |
| 49.79           | 526.91      |         |
| 49.82           | 527.27      |         |

|        |        | E      | Bankfull     |           |
|--------|--------|--------|--------------|-----------|
|        |        | Hydra  | lic Geometry |           |
|        | Width  | Depth  | Perimeter    | Area      |
|        | (Feet) | (Feet) | (Feet)       | (Sq. Ft.) |
|        | 0.00   | 0.00   | 0.00         | 0.00      |
|        | 0.55   | 0.12   | 0.56         | 0.03      |
|        | 4.31   | 1.19   | 4.44         | 2.82      |
|        | 2.10   | 1.93   | 2.22         | 3.28      |
|        | 0.58   | 2.54   | 0.84         | 1.29      |
|        | 0.64   | 2.93   | 0.75         | 1.75      |
|        | 1.17   | 3.32   | 1.24         | 3.66      |
|        | 0.97   | 3.43   | 0.97         | 3.27      |
|        | 1.09   | 3.27   | 1.11         | 3.67      |
|        | 0.41   | 2.82   | 0.61         | 1.25      |
|        | 0.39   | 3.16   | 0.52         | 1.17      |
|        | 0.84   | 3.03   | 0.85         | 2.59      |
|        | 0.23   | 2.44   | 0.63         | 0.62      |
|        | 0.14   | 2.27   | 0.22         | 0.34      |
|        | 0.28   | 2.12   | 0.32         | 0.62      |
|        | 0.12   | 1.65   | 0.49         | 0.23      |
|        | 1.94   | 1.11   | 2.02         | 2.68      |
|        | 1.92   | 0.08   | 2.18         | 1.14      |
|        | 0.50   | 0.00   | 0.51         | 0.02      |
| TOTALS | 18.19  |        | 20.47        | 30.44     |
|        |        |        |              |           |

| SUMN   | IARY DATA |
|--------|-----------|
| A(BKF) | 30.44     |
| W(BKF) | 18.19     |
| Max d  | 3.43      |
| Mean d | 1.67      |
| Wet. P | 20.47     |
| Hvd R  | 1 49      |

Bankfull datum\* = 526.52 \*Datum reset during Monitoring Year 2.





| Field Crew:                           | IPJ and PDB       | 1       |                     |                     |                                       |                |                                                       |                               |
|---------------------------------------|-------------------|---------|---------------------|---------------------|---------------------------------------|----------------|-------------------------------------------------------|-------------------------------|
| Stream Reach:                         | 3                 |         |                     |                     |                                       |                |                                                       |                               |
| Drainage Area:                        | 1.05<br>Mor 07    |         |                     |                     |                                       |                |                                                       |                               |
| Dale:<br>Monitoring Year              | - 2               |         |                     |                     |                                       |                |                                                       |                               |
| womoning real                         | 5                 | 1       |                     |                     |                                       |                |                                                       |                               |
| STATION                               | <b>FI EVATION</b> | NOTES   | I                   |                     |                                       | Bankfull       |                                                       |                               |
| (Feet)                                | (Feet)            | NOTES   |                     |                     | Hydr                                  | aulic Geometry |                                                       |                               |
|                                       | 527.68            | 1       |                     | Width               | Denth                                 | Perimeter      | Area                                                  |                               |
| 0.00                                  | 527.00            |         |                     | (Foot)              | (Eget)                                | (Eget)         | (Sa Et )                                              |                               |
| 7.42                                  | 526.18            | -       |                     | 0.00                |                                       | 0.00           | 0.00                                                  |                               |
| 0 00                                  | 526.06            | -       |                     | 2 72                | 1 14                                  | 2.05           | 1.55                                                  |                               |
| 10.36                                 | 525.70            | -       |                     | 1.56                | 2.19                                  | 1.84           | 2.54                                                  |                               |
| 21.50                                 | 525.46            | -       |                     | 0.80                | 2.12                                  | 0.82           | 1 76                                                  |                               |
| 24.33                                 | 524.28            |         |                     | 0.00                | 2.27                                  | 0.02           | 0.99                                                  |                               |
| 2 <del>4</del> .57<br>25.93           | 523.30            |         |                     | 0.40                | 2.15                                  | 0.40           | 0.33                                                  |                               |
| 26.33                                 | 523.30            | FW/     |                     | 1 27                | 2.23                                  | 1 31           | 3.06                                                  |                               |
| 20.74                                 | 523.13            |         |                     | 0.40                | 2.57                                  | 0.50           | 1 28                                                  |                               |
| 27.18                                 | 523.27            | EW      |                     | 1.49                | 2.01                                  | 1.00           | 2 60                                                  |                               |
| 27.37                                 | 523.17            |         |                     | 0.65                | 2.40                                  | 0.70           | 1 5/                                                  |                               |
| 20.04                                 | 522.00            | Thalweg |                     | 0.00                | 2.23                                  | 01.0           | 0.32                                                  |                               |
| 29.13                                 | 522.01            | maiwey  |                     | 0.17                | 1.39                                  | 0.00           | 0.32                                                  |                               |
| 30.10                                 | 522.94            |         |                     | 1 40                | 1.47                                  | 0.21           | 0.20                                                  |                               |
| 30.01                                 | 523.19            | REW     |                     | 1.40                | 1.19                                  | 1.51           | 1.97                                                  |                               |
| 30.98                                 | 523.83            | _       |                     | 1.30                | 0.54                                  | 1.51           | 1.18                                                  |                               |
| 31.15                                 | 523.95            | _       |                     | 1.79                | 0.03                                  | 1.80           | 0.51                                                  |                               |
| 32.63                                 | 524.23            | _       | TOTAL               | 0.27                | 0.00                                  | 0.27           | 0.00                                                  |                               |
| 33.99                                 | 524.88            | DVE     | TOTALS              | 14.40               |                                       | 15.84          | 19.98                                                 |                               |
| 35.78                                 | 525.39            |         | 61                  |                     |                                       |                | Demistull deturnst                                    | EDE 40                        |
| 37.32                                 | 525.55            | TOB     | <u>SL</u>           |                     | JAIA (BANKFULL)                       | 45.            | Bankfull datum <sup>*</sup> =                         | 525.42<br>Manifestine Version |
| 40.60                                 | 525.46            | -       | A(BKF)              | 19.98               | W(FPA)                                | 45+            | *Datum reset during                                   | Monitoring Year 2             |
| 42.94                                 | 525.63            | -       | W(BKF)              | 14.40               | WP                                    | 15.84          |                                                       |                               |
| 44.82                                 | 525.90            | -       | Max d               | 2.61                | Hydraulic Radius                      | 1.26           | _                                                     |                               |
| 45.01                                 | 526.34            |         | iviean d            | 1.39                | vvetted Perimeter=                    | = VVP          |                                                       |                               |
|                                       |                   |         | W/D                 | 10.38               | Area=                                 | = A            |                                                       |                               |
|                                       |                   |         | Bank Height         | 2.73                | vviatn=                               | = VV           |                                                       |                               |
|                                       |                   |         | Entrenchment        | 2.9+                | Deptn=                                | = D            |                                                       |                               |
|                                       |                   |         | Stream Type         | C                   | Bankfull                              | = BKF          |                                                       |                               |
|                                       |                   |         | Area from Rural Reg | gional Curv         | /e                                    | 22.7           |                                                       |                               |
| · · · · · · · · · · · · · · · · · · · |                   |         |                     |                     |                                       |                |                                                       |                               |
| 532                                   |                   |         | Cross Secti         | on #12 (U<br>Riffle | JT South Fork)                        |                |                                                       |                               |
| 531                                   |                   |         | i                   | <b>.</b>            |                                       |                |                                                       |                               |
| 530                                   |                   |         |                     |                     |                                       |                |                                                       |                               |
| 529                                   |                   |         |                     |                     |                                       |                |                                                       |                               |
| 528 -                                 |                   |         |                     | <b>:</b>            |                                       |                |                                                       |                               |
| □ 527 -                               |                   |         |                     |                     |                                       |                |                                                       |                               |
| . 3 526                               | •                 | •       |                     |                     | Ban                                   | kfull          | · · · · · · <del>.</del> · · · · · <u>.</u> · · · · · | ·····                         |
| 525                                   |                   |         |                     |                     |                                       |                |                                                       |                               |
| .9 524                                |                   |         |                     |                     | ····· 🔨                               | ····· •        |                                                       |                               |
| te 523                                |                   |         |                     | ;                   | · · · · · · · · · · · · · · · · · · · | ~ <b>**</b>    | ;                                                     | - +                           |
| 522                                   |                   |         |                     |                     |                                       |                |                                                       | -+                            |
| <sup>™</sup> 521 -                    |                   |         |                     |                     |                                       |                |                                                       | - •                           |
| 520                                   |                   |         |                     | ;                   |                                       | ;              |                                                       | - +                           |
| 519                                   |                   |         |                     |                     |                                       |                |                                                       |                               |
| 518                                   |                   |         |                     |                     |                                       |                |                                                       | - i                           |
| 517 -                                 | •                 | i       | 1                   |                     |                                       |                |                                                       | +                             |

Distance (feet)

### **APPENDIX B5**

# STREAM LONGITUDINAL PROFILE

Longitudinal Profile Overlay (Years 2 & 3) UT to South Fork - Reach 1 Elevation (feet) **Channel Distance (feet)** --- Thalweg Year 1 (3-31-2006) ---- Thalweg Year 2 (1-31-2007) ---- Water Surface Year 3 Left Bankfull Year 3 Right Bankfull Year 3 • Left Top of Bank Year 3 • Right Top of Bank Year 3 • Crossvane • J-Hook Rootwad



Longitudinal Profile Overlay (Years 2 & 3) UT to South Fork - Reach 2 **Elevation (feet)** 232 234 Channel Distance (feet)

Thalweg Year 1 (4-06-2006)
 Water Surface Year 3
 Left Top of Bank Year 3
 J-hook
 Thalweg Year 2 (2-19-2007)
 Thalweg Year 3
 Left Bankfull Year 3
 Right Top of Bank Year 3
 Rootwad



Longitudinal Profile Overlay (Years 2 & 3) UT to South Fork - Reach 3 Elevation (feet) --- Thalweg Year 1 (4-14-2006) --- Thalweg Year 2 (1-25-2007) --- Thalweg Year 3 (3-18-2008) --- Water Surface Year 3 Left Bankfull Year 3 Right Bankfull Year 3 • Left Top of Bank Year 3 Δ. • Crossvane J-hook

Appendix B5



| PEBBLE       |             |             |             | 00                  |          | -      |       |
|--------------|-------------|-------------|-------------|---------------------|----------|--------|-------|
| Site: UT So  | uth Fork    |             |             | C-C.                | H I      | ור     |       |
|              |             |             |             | $\Delta \mathbf{v}$ |          |        |       |
| Party: IPJ & | PDB         |             |             | <b>U</b> ENGIN      | IEERING  | GROUP  | 6     |
| Date: 10/22  | /08         |             |             | PA                  | RTICLE C | OUNT   |       |
|              |             |             |             | CS 1                |          |        |       |
| Inches       | Particle    | Millimeters |             |                     | TOT#     | ITEM % | % CUM |
|              | Silt/Clay   | < 0.062     | S/C         | 27                  | 27       | 47%    | 47%   |
|              | Very Fine   | .062125     |             | 2                   | 2        | 4%     | 51%   |
|              | Fine        | .12525      | S S         |                     | 0        | 0%     | 51%   |
|              | Medium      | .2550       |             |                     | 0        | 0%     | 51%   |
|              | Coarse      | .50-1.0     |             | 1                   | 1        | 2%     | 53%   |
| .0408        | Very Coarse | 1.0-2       |             | 1                   | 1        | 2%     | 54%   |
| .0816        | Very Fine   | 2.0-4.0     | $\frown$    | 2                   | 2        | 4%     | 58%   |
| .1622        | Fine        | 4-5.7       |             | 1                   | 1        | 2%     | 60%   |
| .2231        | Fine        | 5.7-8       |             | 2                   | 2        | 4%     | 63%   |
| .3144        | Medium      | 8-11.3      |             | 3                   | 3        | 5%     | 68%   |
| .4463        | Medium      | 11.3-16     |             | 2                   | 2        | 4%     | 72%   |
| .6389        | Coarse      | 16-22.6     |             | 8                   | 8        | 14%    | 86%   |
| .89-1.26     | Coarse      | 22.6-32     |             | 7                   | 7        | 12%    | 98%   |
| 1.26-1.77    | Very Coarse | 32-45       |             | 1                   | 1        | 2%     | 100%  |
| 1.77-2.5     | Very Coarse | 45-64       |             |                     | 0        | 0%     | 100%  |
| 2.5-3.5      | Small       | 64-90       |             |                     | 0        | 0%     | 100%  |
| 3.5-5.0      | Small       | 90-128      |             |                     | 0        | 0%     | 100%  |
| 5.0-7.1      | Large       | 128-180     |             |                     | 0        | 0%     | 100%  |
| 7.1-10.1     | Large       | 180-256     |             |                     | 0        | 0%     | 100%  |
| 10.1-14.3    | Small       | 256-362     |             |                     | 0        | 0%     | 100%  |
| 14.3-20      | Small       | 362-512     |             |                     | 0        | 0%     | 100%  |
| 20-40        | Medium      | 512-1024    | L BOULDER / |                     | 0        | 0%     | 100%  |
| 40-80        | Large       | 1024-2048   |             |                     | 0        | 0%     | 100%  |
|              | Bedrock     |             | BDRK        |                     | 0        | 0%     | 100%  |
|              |             |             |             | TOTALS              | 57       | 100%   | 100%  |



| PEBBLE         |             |             |      | 00             |         | -      |       |
|----------------|-------------|-------------|------|----------------|---------|--------|-------|
| Site: UT So    | uth Fork    |             |      | C-S            | F I     | ור     |       |
|                |             |             |      | $\Box \cup$    |         |        |       |
| Party: IPJ 8   | & PDB       |             |      | <b>U</b> ENGIN | IEERING | GROUP  | 65    |
| Date: 10/22/08 |             |             | РА   |                | OUNT    |        |       |
|                |             |             |      | CS 2           |         |        |       |
| Inches         | Particle    | Millimeters |      |                | TOT#    | ITEM % | % CUM |
|                | Silt/Clay   | < 0.062     | S/C  | 27             | 27      | 44%    | 44%   |
|                | Very Fine   | .062125     |      |                | 0       | 0%     | 44%   |
|                | Fine        | .12525      |      |                | 0       | 0%     | 44%   |
|                | Medium      | .2550       | N N  | 1              | 1       | 2%     | 46%   |
|                | Coarse      | .50-1.0     | D    | 7              | 7       | 11%    | 57%   |
| .0408          | Very Coarse | 1.0-2       |      | 15             | 15      | 25%    | 82%   |
| .0816          | Very Fine   | 2.0-4.0     |      |                | 0       | 0%     | 82%   |
| .1622          | Fine        | 4-5.7       |      | 4              | 4       | 7%     | 89%   |
| .2231          | Fine        | 5.7-8       |      | 3              | 3       | 5%     | 93%   |
| .3144          | Medium      | 8-11.3      |      | 3              | 3       | 5%     | 98%   |
| .4463          | Medium      | 11.3-16     |      |                | 0       | 0%     | 98%   |
| .6389          | Coarse      | 16-22.6     |      |                | 0       | 0%     | 98%   |
| .89-1.26       | Coarse      | 22.6-32     |      |                | 0       | 0%     | 98%   |
| 1.26-1.77      | Very Coarse | 32-45       |      |                | 0       | 0%     | 98%   |
| 1.77-2.5       | Very Coarse | 45-64       |      |                | 0       | 0%     | 98%   |
| 2.5-3.5        | Small       | 64-90       |      |                | 0       | 0%     | 98%   |
| 3.5-5.0        | Small       | 90-128      |      |                | 0       | 0%     | 98%   |
| 5.0-7.1        | Large       | 128-180     |      |                | 0       | 0%     | 98%   |
| 7.1-10.1       | Large       | 180-256     |      |                | 0       | 0%     | 98%   |
| 10.1-14.3      | Small       | 256-362     |      |                | 0       | 0%     | 98%   |
| 14.3-20        | Small       | 362-512     |      |                | 0       | 0%     | 98%   |
| 20-40          | Medium      | 512-1024    |      | 1              | 1       | 2%     | 100%  |
| 40-80          | Large       | 1024-2048   |      |                | 0       | 0%     | 100%  |
|                | Bedrock     |             | BDRK |                | 0       | 0%     | 100%  |
|                |             |             |      | TOTALS         | 61      | 100%   | 100%  |



| PEBBLE       | E COUNT     |             |               | 00           |        | -             |       |
|--------------|-------------|-------------|---------------|--------------|--------|---------------|-------|
| Site: UT So  | uth Fork    |             |               | C-C          | H'I    |               |       |
|              |             |             |               | 20           |        |               | 8     |
| Party: IPJ 8 | PDB         |             |               | <b>ENGIN</b> | EERING | GROUP         | 6     |
|              |             |             |               |              |        |               |       |
| Date: 10/22  | /08         |             |               | PA           |        | OUNT          |       |
| Inches       | Particle    | Millimeters |               | CS 3         | TOT#   | ITEM %        | % CUM |
|              | Silt/Clay   | < 0.062     | S/C           | 49           | 49     | 94%           | 94%   |
|              | Very Fine   | .062125     |               |              | 0      | 0%            | 94%   |
|              | Fine        | .12525      | S S           |              | 0      | 0%            | 94%   |
|              | Medium      | .2550       |               |              | 0      | 0%            | 94%   |
|              | Coarse      | .50-1.0     |               | 3            | 3      | 6%            | 100%  |
| .0408        | Very Coarse | 1.0-2       |               |              | 0      | 0%            | 100%  |
| .0816        | Very Fine   | 2.0-4.0     |               |              | 0      | 0%            | 100%  |
| .1622        | Fine        | 4-5.7       |               |              | 0      | 0%            | 100%  |
| .2231        | Fine        | 5.7-8       |               |              | 0      | 0%            | 100%  |
| .3144        | Medium      | 8-11.3      |               |              | 0      | 0%            | 100%  |
| .4463        | Medium      | 11.3-16     |               |              | 0      | 0%            | 100%  |
| .6389        | Coarse      | 16-22.6     |               |              | 0      | 0%            | 100%  |
| .89-1.26     | Coarse      | 22.6-32     |               |              | 0      | 0%            | 100%  |
| 1.26-1.77    | Very Coarse | 32-45       |               |              | 0      | 0%            | 100%  |
| 1.77-2.5     | Very Coarse | 45-64       | $\overline{}$ |              | 0      | 0%            | 100%  |
| 2.5-3.5      | Small       | 64-90       |               |              | 0      | 0%            | 100%  |
| 3.5-5.0      | Small       | 90-128      |               |              | 0      | 0%            | 100%  |
| 5.0-7.1      | Large       | 128-180     |               |              | 0      | 0%            | 100%  |
| 7.1-10.1     | Large       | 180-256     |               |              | 0      | 0%            | 100%  |
| 10.1-14.3    | Small       | 256-362     |               |              | 0      | 0%            | 100%  |
| 14.3-20      | Small       | 362-512     |               |              | 0      | 0%            | 100%  |
| 20-40        | Medium      | 512-1024    |               |              | 0      | 0%            | 100%  |
| 40-80        | Large       | 1024-2048   |               |              | 0      | 0%            | 100%  |
|              | Bedrock     |             | BDRK          |              | 0      | 0%            | 100%  |
|              |             |             |               | TOTALS>      | 52     | 1 <b>00</b> % | 100%  |



| PEBBLE       | E COUNT     |             |           | 00             | -       | -      |       |
|--------------|-------------|-------------|-----------|----------------|---------|--------|-------|
| Site: UT So  | uth Fork    |             |           |                | H' I    | ור     |       |
|              |             |             |           | C C            |         |        |       |
| Party: IPJ & | PDB         |             |           | <b>U</b> ENGIN | IEERING | GROUP  | 12    |
| Data: 10/22  | /0.0        |             |           | DA             |         |        |       |
| Date: 10/22  | /06         |             |           |                |         |        |       |
| Inches       | Particle    | Millimeters |           | 034            | TOT#    | ITEM % | % CUM |
|              | Silt/Clay   | < 0.062     | S/C       | 39             | 39      | 76%    | 76%   |
|              | Very Fine   | .062125     |           |                | 0       | 0%     | 76%   |
|              | Fine        | .12525      | S S       |                | 0       | 0%     | 76%   |
|              | Medium      | .2550       |           |                | 0       | 0%     | 76%   |
|              | Coarse      | .50-1.0     |           | 1              | 1       | 2%     | 78%   |
| .0408        | Very Coarse | 1.0-2       |           | 1              | 1       | 2%     | 80%   |
| .0816        | Very Fine   | 2.0-4.0     | $\frown$  |                | 0       | 0%     | 80%   |
| .1622        | Fine        | 4-5.7       |           | 1              | 1       | 2%     | 82%   |
| .2231        | Fine        | 5.7-8       |           |                | 0       | 0%     | 82%   |
| .3144        | Medium      | 8-11.3      |           | 1              | 1       | 2%     | 84%   |
| .4463        | Medium      | 11.3-16     |           | 1              | 1       | 2%     | 86%   |
| .6389        | Coarse      | 16-22.6     |           | 3              | 3       | 6%     | 92%   |
| .89-1.26     | Coarse      | 22.6-32     |           |                | 0       | 0%     | 92%   |
| 1.26-1.77    | Very Coarse | 32-45       |           | 1              | 1       | 2%     | 94%   |
| 1.77-2.5     | Very Coarse | 45-64       |           | 3              | 3       | 6%     | 100%  |
| 2.5-3.5      | Small       | 64-90       |           |                | 0       | 0%     | 100%  |
| 3.5-5.0      | Small       | 90-128      |           |                | 0       | 0%     | 100%  |
| 5.0-7.1      | Large       | 128-180     | $\Box$    |                | 0       | 0%     | 100%  |
| 7.1-10.1     | Large       | 180-256     |           |                | 0       | 0%     | 100%  |
| 10.1-14.3    | Small       | 256-362     |           |                | 0       | 0%     | 100%  |
| 14.3-20      | Small       | 362-512     |           |                | 0       | 0%     | 100%  |
| 20-40        | Medium      | 512-1024    | BOOLDER / |                | 0       | 0%     | 100%  |
| 40-80        | Large       | 1024-2048   |           |                | 0       | 0%     | 100%  |
|              | Bedrock     |             | BDRK      |                | 0       | 0%     | 100%  |
|              |             |             |           | TOTALS         | 51      | 100%   | 100%  |



| PEBBLE       | E COUNT     |             |             | 00           | -       | -      |       |
|--------------|-------------|-------------|-------------|--------------|---------|--------|-------|
| Site: UT So  | uth Fork    |             |             | C-C.         | H' I    | וכ     |       |
|              |             |             |             | a<br>U       |         |        |       |
| Party: IPJ 8 | PDB         |             |             | <b>ENGIN</b> | IEERING | GROUP  | 12    |
|              |             |             |             |              |         |        |       |
| Date: 10/22  | /08         |             |             | PA           |         | OUNT   |       |
| Inches       | Particle    | Millimeters |             | CS 5         | TOT#    | ITEM % | % CUM |
|              | Silt/Clay   | < 0.062     | S/C         | 22           | 22      | 43%    | 43%   |
|              | Very Fine   | .062125     |             |              | 0       | 0%     | 43%   |
|              | Fine        | .12525      | S S         |              | 0       | 0%     | 43%   |
|              | Medium      | .2550       |             |              | 0       | 0%     | 43%   |
|              | Coarse      | .50-1.0     |             | 1            | 1       | 2%     | 45%   |
| .0408        | Very Coarse | 1.0-2       |             | 1            | 1       | 2%     | 47%   |
| .0816        | Very Fine   | 2.0-4.0     |             | 3            | 3       | 6%     | 53%   |
| .1622        | Fine        | 4-5.7       |             | 1            | 1       | 2%     | 55%   |
| .2231        | Fine        | 5.7-8       |             |              | 0       | 0%     | 55%   |
| .3144        | Medium      | 8-11.3      |             |              | 0       | 0%     | 55%   |
| .4463        | Medium      | 11.3-16     |             | 3            | 3       | 6%     | 61%   |
| .6389        | Coarse      | 16-22.6     |             | 1            | 1       | 2%     | 63%   |
| .89-1.26     | Coarse      | 22.6-32     |             | 5            | 5       | 10%    | 73%   |
| 1.26-1.77    | Very Coarse | 32-45       | `           | 1            | 1       | 2%     | 75%   |
| 1.77-2.5     | Very Coarse | 45-64       |             | 9            | 9       | 18%    | 92%   |
| 2.5-3.5      | Small       | 64-90       |             | 1            | 1       | 2%     | 94%   |
| 3.5-5.0      | Small       | 90-128      |             | 1            | 1       | 2%     | 96%   |
| 5.0-7.1      | Large       | 128-180     |             |              | 0       | 0%     | 96%   |
| 7.1-10.1     | Large       | 180-256     |             | 1            | 1       | 2%     | 98%   |
| 10.1-14.3    | Small       | 256-362     |             | 1            | 1       | 2%     | 100%  |
| 14.3-20      | Small       | 362-512     |             |              | 0       | 0%     | 100%  |
| 20-40        | Medium      | 512-1024    | L BOULDER / |              | 0       | 0%     | 100%  |
| 40-80        | Large       | 1024-2048   |             |              | 0       | 0%     | 100%  |
|              | Bedrock     |             | BDRK        |              | 0       | 0%     | 100%  |
|              |             |             |             | TOTALS       | 51      | 100%   | 100%  |



| PEBBLE         | E COUNT     |             |          | 00           | -       |        |       |
|----------------|-------------|-------------|----------|--------------|---------|--------|-------|
| Site: UT So    | outh Fork   |             |          | C-C.         | H' I    |        |       |
|                |             |             |          | 20           |         |        |       |
| Party: IPJ 8   | PDB         |             |          | <b>ENGIN</b> | IEERING | GROUP  | G5    |
|                |             |             |          |              |         |        |       |
| Date: 10/22/08 |             |             |          |              |         | OUNT   |       |
| Inches         | Particle    | Millimeters |          | 656          | TOT#    | ITEM % | % CUM |
|                | Silt/Clay   | < 0.062     | S/C      | 5            | 5       | 10%    | 10%   |
|                | Very Fine   | .062125     |          |              | 0       | 0%     | 10%   |
|                | Fine        | .12525      | S S      | 1            | 1       | 2%     | 12%   |
|                | Medium      | .2550       |          |              | 0       | 0%     | 12%   |
|                | Coarse      | .50-1.0     |          |              | 0       | 0%     | 12%   |
| .0408          | Very Coarse | 1.0-2       |          | 3            | 3       | 6%     | 18%   |
| .0816          | Very Fine   | 2.0-4.0     | $\frown$ |              | 0       | 0%     | 18%   |
| .1622          | Fine        | 4-5.7       |          |              | 0       | 0%     | 18%   |
| .2231          | Fine        | 5.7-8       |          | 1            | 1       | 2%     | 20%   |
| .3144          | Medium      | 8-11.3      |          | 4            | 4       | 8%     | 29%   |
| .4463          | Medium      | 11.3-16     |          | 15           | 15      | 31%    | 59%   |
| .6389          | Coarse      | 16-22.6     |          | 6            | 6       | 12%    | 71%   |
| .89-1.26       | Coarse      | 22.6-32     |          | 13           | 13      | 27%    | 98%   |
| 1.26-1.77      | Very Coarse | 32-45       |          | 1            | 1       | 2%     | 100%  |
| 1.77-2.5       | Very Coarse | 45-64       |          |              | 0       | 0%     | 100%  |
| 2.5-3.5        | Small       | 64-90       |          |              | 0       | 0%     | 100%  |
| 3.5-5.0        | Small       | 90-128      |          |              | 0       | 0%     | 100%  |
| 5.0-7.1        | Large       | 128-180     | $\Box$   |              | 0       | 0%     | 100%  |
| 7.1-10.1       | Large       | 180-256     |          |              | 0       | 0%     | 100%  |
| 10.1-14.3      | Small       | 256-362     |          |              | 0       | 0%     | 100%  |
| 14.3-20        | Small       | 362-512     |          |              | 0       | 0%     | 100%  |
| 20-40          | Medium      | 512-1024    |          |              | 0       | 0%     | 100%  |
| 40-80          | Large       | 1024-2048   |          |              | 0       | 0%     | 100%  |
|                | Bedrock     |             | BDRK     |              | 0       | 0%     | 100%  |
|                |             |             |          | TOTALS       | 49      | 100%   | 100%  |



| PEBBLF       | E COUNT     |             |      | 00     |        |        |       |
|--------------|-------------|-------------|------|--------|--------|--------|-------|
| Site: UT So  | uth Fork    |             |      | C-C.   | H'I    |        |       |
|              |             |             |      | 20     |        |        |       |
| Party: IPJ & | k PDB       |             |      | ENGIN  | EERING | GROUP  | 12.   |
| -            |             |             |      |        |        |        |       |
| Date: 10/22  | /08         |             |      |        |        | OUNT   |       |
| Inches       | Particle    | Millimeters |      | 057    | TOT#   | ITEM % | % CUM |
|              | Silt/Clay   | < 0.062     | S/C  | 16     | 16     | 29%    | 29%   |
|              | Very Fine   | .062125     |      |        | 0      | 0%     | 29%   |
|              | Fine        | .12525      | S S  |        | 0      | 0%     | 29%   |
|              | Medium      | .2550       |      | 1      | 1      | 2%     | 31%   |
|              | Coarse      | .50-1.0     |      | 1      | 1      | 2%     | 33%   |
| .0408        | Very Coarse | 1.0-2       |      | 12     | 12     | 22%    | 55%   |
| .0816        | Very Fine   | 2.0-4.0     |      | 2      | 2      | 4%     | 58%   |
| .1622        | Fine        | 4-5.7       |      | 2      | 2      | 4%     | 62%   |
| .2231        | Fine        | 5.7-8       |      | 3      | 3      | 5%     | 67%   |
| .3144        | Medium      | 8-11.3      |      | 7      | 7      | 13%    | 80%   |
| .4463        | Medium      | 11.3-16     |      | 1      | 1      | 2%     | 82%   |
| .6389        | Coarse      | 16-22.6     |      | 2      | 2      | 4%     | 85%   |
| .89-1.26     | Coarse      | 22.6-32     |      | 4      | 4      | 7%     | 93%   |
| 1.26-1.77    | Very Coarse | 32-45       |      |        | 0      | 0%     | 93%   |
| 1.77-2.5     | Very Coarse | 45-64       |      | 1      | 1      | 2%     | 95%   |
| 2.5-3.5      | Small       | 64-90       |      |        | 0      | 0%     | 95%   |
| 3.5-5.0      | Small       | 90-128      |      |        | 0      | 0%     | 95%   |
| 5.0-7.1      | Large       | 128-180     |      |        | 0      | 0%     | 95%   |
| 7.1-10.1     | Large       | 180-256     |      | 1      | 1      | 2%     | 96%   |
| 10.1-14.3    | Small       | 256-362     |      | 2      | 2      | 4%     | 100%  |
| 14.3-20      | Small       | 362-512     |      |        | 0      | 0%     | 100%  |
| 20-40        | Medium      | 512-1024    |      |        | 0      | 0%     | 100%  |
| 40-80        | Large       | 1024-2048   |      |        | 0      | 0%     | 100%  |
|              | Bedrock     |             | BDRK |        | 0      | 0%     | 100%  |
|              |             |             |      | TOTALS | 55     | 100%   | 100%  |



| PEBBLE       | E COUNT     |             |           |         |         |        |               |
|--------------|-------------|-------------|-----------|---------|---------|--------|---------------|
| Site: UT So  | uth Fork    |             |           | (- C.   | H'I     |        |               |
|              |             |             |           | 20      | ا نا    |        |               |
| Party: IPJ & | k PDB       |             |           | ENGIN   | IEERING | GROUP  | 15            |
| -            |             |             |           |         |         |        |               |
| Date: 10/22  | /08         |             |           | PA      |         | OUNT   |               |
| Inches       | Particle    | Millimeters |           | CS 8    | TOT#    | ITEM % | % CUM         |
|              | Silt/Clay   | < 0.062     | S/C       | 36      | 36      | 64%    | 64%           |
|              | Very Fine   | .062125     |           |         | 0       | 0%     | 64%           |
|              | Fine        | .12525      | S S       |         | 0       | 0%     | 64%           |
|              | Medium      | .2550       |           |         | 0       | 0%     | 64%           |
|              | Coarse      | .50-1.0     |           |         | 0       | 0%     | 64%           |
| .0408        | Very Coarse | 1.0-2       |           |         | 0       | 0%     | 64%           |
| .0816        | Very Fine   | 2.0-4.0     |           |         | 0       | 0%     | 64%           |
| .1622        | Fine        | 4-5.7       |           |         | 0       | 0%     | 64%           |
| .2231        | Fine        | 5.7-8       |           | 3       | 3       | 5%     | 70%           |
| .3144        | Medium      | 8-11.3      |           | 1       | 1       | 2%     | 71%           |
| .4463        | Medium      | 11.3-16     |           |         | 0       | 0%     | 71%           |
| .6389        | Coarse      | 16-22.6     |           | 7       | 7       | 13%    | 84%           |
| .89-1.26     | Coarse      | 22.6-32     |           | 5       | 5       | 9%     | 93%           |
| 1.26-1.77    | Very Coarse | 32-45       |           | 3       | 3       | 5%     | 98%           |
| 1.77-2.5     | Very Coarse | 45-64       |           | 1       | 1       | 2%     | 100%          |
| 2.5-3.5      | Small       | 64-90       |           |         | 0       | 0%     | 100%          |
| 3.5-5.0      | Small       | 90-128      | COBBLE    |         | 0       | 0%     | 100%          |
| 5.0-7.1      | Large       | 128-180     |           |         | 0       | 0%     | 100%          |
| 7.1-10.1     | Large       | 180-256     |           |         | 0       | 0%     | 100%          |
| 10.1-14.3    | Small       | 256-362     |           |         | 0       | 0%     | 100%          |
| 14.3-20      | Small       | 362-512     |           |         | 0       | 0%     | 100%          |
| 20-40        | Medium      | 512-1024    | BOULDER / |         | 0       | 0%     | 100%          |
| 40-80        | Large       | 1024-2048   |           |         | 0       | 0%     | 100%          |
|              | Bedrock     |             | BDRK      |         | 0       | 0%     | 100%          |
|              |             |             |           | TOTALS> | 56      | 100%   | 1 <b>00</b> % |



| PEBBLE COUNT        |             |             | 00   | -                 | -    |        |       |  |
|---------------------|-------------|-------------|------|-------------------|------|--------|-------|--|
| Site: UT South Fork |             |             |      | C-C.              | H' I |        |       |  |
|                     |             |             |      | 20                |      |        |       |  |
| Party: IPJ 8        | k PDB       |             |      | ENGINEERING GROUP |      |        |       |  |
| -                   |             |             |      |                   |      |        |       |  |
| Date: 10/22         | /08         |             |      | PA                |      |        |       |  |
| Inches              | Particle    | Millimeters |      | CS 9              | TOT# | ITEM % | % CUM |  |
|                     | Silt/Clay   | < 0.062     | S/C  | 4                 | 4    | 8%     | 8%    |  |
|                     | Very Fine   | .062125     |      | 6                 | 6    | 12%    | 19%   |  |
|                     | Fine        | .12525      | S S  | 1                 | 1    | 2%     | 21%   |  |
|                     | Medium      | .2550       |      | 2                 | 2    | 4%     | 25%   |  |
|                     | Coarse      | .50-1.0     |      | 3                 | 3    | 6%     | 31%   |  |
| .0408               | Very Coarse | 1.0-2       |      | 13                | 13   | 25%    | 56%   |  |
| .0816               | Very Fine   | 2.0-4.0     |      | 1                 | 1    | 2%     | 58%   |  |
| .1622               | Fine        | 4-5.7       |      | 3                 | 3    | 6%     | 63%   |  |
| .2231               | Fine        | 5.7-8       |      | 4                 | 4    | 8%     | 71%   |  |
| .3144               | Medium      | 8-11.3      |      | 7                 | 7    | 13%    | 85%   |  |
| .4463               | Medium      | 11.3-16     |      | 2                 | 2    | 4%     | 88%   |  |
| .6389               | Coarse      | 16-22.6     |      | 4                 | 4    | 8%     | 96%   |  |
| .89-1.26            | Coarse      | 22.6-32     |      | 2                 | 2    | 4%     | 100%  |  |
| 1.26-1.77           | Very Coarse | 32-45       | `    |                   | 0    | 0%     | 100%  |  |
| 1.77-2.5            | Very Coarse | 45-64       |      |                   | 0    | 0%     | 100%  |  |
| 2.5-3.5             | Small       | 64-90       |      |                   | 0    | 0%     | 100%  |  |
| 3.5-5.0             | Small       | 90-128      |      |                   | 0    | 0%     | 100%  |  |
| 5.0-7.1             | Large       | 128-180     |      |                   | 0    | 0%     | 100%  |  |
| 7.1-10.1            | Large       | 180-256     |      |                   | 0    | 0%     | 100%  |  |
| 10.1-14.3           | Small       | 256-362     |      |                   | 0    | 0%     | 100%  |  |
| 14.3-20             | Small       | 362-512     |      |                   | 0    | 0%     | 100%  |  |
| 20-40               | Medium      | 512-1024    |      |                   | 0    | 0%     | 100%  |  |
| 40-80               | Large       | 1024-2048   |      |                   | 0    | 0%     | 100%  |  |
|                     | Bedrock     |             | BDRK |                   | 0    | 0%     | 100%  |  |
|                     |             |             |      | TOTALS            | 52   | 100%   | 100%  |  |



| PEBBLE COUNT        |                  |             | 00   |                |        |        |       |
|---------------------|------------------|-------------|------|----------------|--------|--------|-------|
| Site: UT South Fork |                  |             |      |                | F. I   |        |       |
|                     |                  |             |      | 20             | ا نا   | . 1    |       |
| Party: IPJ 8        | Party: IPI & PDB |             |      | C ENGIN        | EERING | GROUP  | 6     |
|                     |                  |             |      |                |        |        |       |
| Date: 10/22         | /08              |             |      | PARTICLE COUNT |        |        |       |
|                     |                  |             |      | CS 10          |        |        |       |
| Inches              | Particle         | Millimeters |      |                | TOT#   | ITEM % | % CUM |
|                     | Silt/Clay        | < 0.062     | S/C  | 4              | 4      | 8%     | 8%    |
|                     | Very Fine        | .062125     |      |                | 0      | 0%     | 8%    |
|                     | Fine             | .12525      |      |                | 0      | 0%     | 8%    |
|                     | Medium           | .2550       |      | 3              | 3      | 6%     | 14%   |
|                     | Coarse           | .50-1.0     |      |                | 0      | 0%     | 14%   |
| .0408               | Very Coarse      | 1.0-2       |      | 11             | 11     | 22%    | 36%   |
| .0816               | Very Fine        | 2.0-4.0     |      |                | 0      | 0%     | 36%   |
| .1622               | Fine             | 4-5.7       |      |                | 0      | 0%     | 36%   |
| .2231               | Fine             | 5.7-8       |      | 5              | 5      | 10%    | 46%   |
| .3144               | Medium           | 8-11.3      |      | 4              | 4      | 8%     | 54%   |
| .4463               | Medium           | 11.3-16     |      | 7              | 7      | 14%    | 68%   |
| .6389               | Coarse           | 16-22.6     |      | 5              | 5      | 10%    | 78%   |
| .89-1.26            | Coarse           | 22.6-32     |      | 4              | 4      | 8%     | 86%   |
| 1.26-1.77           | Very Coarse      | 32-45       |      | 1              | 1      | 2%     | 88%   |
| 1.77-2.5            | Very Coarse      | 45-64       |      | 3              | 3      | 6%     | 94%   |
| 2.5-3.5             | Small            | 64-90       |      | 1              | 1      | 2%     | 96%   |
| 3.5-5.0             | Small            | 90-128      |      | 1              | 1      | 2%     | 98%   |
| 5.0-7.1             | Large            | 128-180     |      | 1              | 1      | 2%     | 100%  |
| 7.1-10.1            | Large            | 180-256     |      |                | 0      | 0%     | 100%  |
| 10.1-14.3           | Small            | 256-362     |      |                | 0      | 0%     | 100%  |
| 14.3-20             | Small            | 362-512     |      |                | 0      | 0%     | 100%  |
| 20-40               | Medium           | 512-1024    |      |                | 0      | 0%     | 100%  |
| 40-80               | Large            | 1024-2048   |      |                | 0      | 0%     | 100%  |
|                     | Bedrock          |             | BDRK |                | 0      | 0%     | 100%  |
|                     |                  |             |      | TOTALS         | 50     | 100%   | 100%  |



| PEBBLE COUNT        |             |             | 00           |                     |       |        |       |
|---------------------|-------------|-------------|--------------|---------------------|-------|--------|-------|
| Site: UT South Fork |             |             |              |                     | H' I  | ור     |       |
|                     |             |             |              | $\Delta \mathbf{U}$ |       |        |       |
| Party: IPJ & PDB    |             |             | <b>ENGIN</b> | IEERING             | GROUP | 12     |       |
|                     |             |             |              |                     |       |        |       |
| Date: 10/22         | /08         |             |              |                     |       | JOUNT  |       |
| Inches              | Particle    | Millimeters |              | 0511                | TOT#  | ITEM % | % CUM |
|                     | Silt/Clay   | < 0.062     | S/C          | 9                   | 9     | 18%    | 18%   |
|                     | Very Fine   | .062125     |              |                     | 0     | 0%     | 18%   |
|                     | Fine        | .12525      | S S          |                     | 0     | 0%     | 18%   |
|                     | Medium      | .2550       |              |                     | 0     | 0%     | 18%   |
|                     | Coarse      | .50-1.0     |              | 1                   | 1     | 2%     | 20%   |
| .0408               | Very Coarse | 1.0-2       |              | 13                  | 13    | 26%    | 46%   |
| .0816               | Very Fine   | 2.0-4.0     | $\frown$     |                     | 0     | 0%     | 46%   |
| .1622               | Fine        | 4-5.7       |              |                     | 0     | 0%     | 46%   |
| .2231               | Fine        | 5.7-8       |              |                     | 0     | 0%     | 46%   |
| .3144               | Medium      | 8-11.3      |              | 2                   | 2     | 4%     | 50%   |
| .4463               | Medium      | 11.3-16     |              | 3                   | 3     | 6%     | 56%   |
| .6389               | Coarse      | 16-22.6     |              | 5                   | 5     | 10%    | 66%   |
| .89-1.26            | Coarse      | 22.6-32     |              | 2                   | 2     | 4%     | 70%   |
| 1.26-1.77           | Very Coarse | 32-45       |              | 2                   | 2     | 4%     | 74%   |
| 1.77-2.5            | Very Coarse | 45-64       | $\bigcirc$   | 3                   | 3     | 6%     | 80%   |
| 2.5-3.5             | Small       | 64-90       |              | 6                   | 6     | 12%    | 92%   |
| 3.5-5.0             | Small       | 90-128      |              | 1                   | 1     | 2%     | 94%   |
| 5.0-7.1             | Large       | 128-180     | $\Box$       | 1                   | 1     | 2%     | 96%   |
| 7.1-10.1            | Large       | 180-256     |              | 2                   | 2     | 4%     | 100%  |
| 10.1-14.3           | Small       | 256-362     |              |                     | 0     | 0%     | 100%  |
| 14.3-20             | Small       | 362-512     |              |                     | 0     | 0%     | 100%  |
| 20-40               | Medium      | 512-1024    |              |                     | 0     | 0%     | 100%  |
| 40-80               | Large       | 1024-2048   |              |                     | 0     | 0%     | 100%  |
|                     | Bedrock     |             | BDRK         |                     | 0     | 0%     | 100%  |
|                     |             |             |              | TOTALS              | 50    | 100%   | 100%  |



\*Year 1 data not available.

| PEBBLE COUNT        |                  |             |             | 00      | -       |        |       |  |
|---------------------|------------------|-------------|-------------|---------|---------|--------|-------|--|
| Site: UT South Fork |                  |             | SSEPI       |         |         |        |       |  |
| Party: IPJ &        | Party: IPJ & PDB |             |             | ENGIN   | NEEKING | GROUP  |       |  |
| Dete: 10/22         | 100              |             |             | DA      |         |        |       |  |
| Date. 10/22         | /00              |             |             |         |         |        |       |  |
| Inches              | Particle         | Millimeters |             | 0012    | TOT#    | ITEM % | % CUM |  |
|                     | Silt/Clay        | < 0.062     | S/C         | 19      | 19      | 38%    | 38%   |  |
|                     | Very Fine        | .062125     |             |         | 0       | 0%     | 38%   |  |
|                     | Fine             | .12525      | s           |         | 0       | 0%     | 38%   |  |
|                     | Medium           | .2550       |             | 1       | 1       | 2%     | 40%   |  |
|                     | Coarse           | .50-1.0     |             | 2       | 2       | 4%     | 44%   |  |
| .0408               | Very Coarse      | 1.0-2       |             | 3       | 3       | 6%     | 50%   |  |
| .0816               | Very Fine        | 2.0-4.0     | $\frown$    |         | 0       | 0%     | 50%   |  |
| .1622               | Fine             | 4-5.7       |             |         | 0       | 0%     | 50%   |  |
| .2231               | Fine             | 5.7-8       |             | 2       | 2       | 4%     | 54%   |  |
| .3144               | Medium           | 8-11.3      |             | 2       | 2       | 4%     | 58%   |  |
| .4463               | Medium           | 11.3-16     | A           | 3       | 3       | 6%     | 64%   |  |
| .6389               | Coarse           | 16-22.6     |             | 3       | 3       | 6%     | 70%   |  |
| .89-1.26            | Coarse           | 22.6-32     |             | 4       | 4       | 8%     | 78%   |  |
| 1.26-1.77           | Very Coarse      | 32-45       |             | 2       | 2       | 4%     | 82%   |  |
| 1.77-2.5            | Very Coarse      | 45-64       |             | 2       | 2       | 4%     | 86%   |  |
| 2.5-3.5             | Small            | 64-90       |             | 4       | 4       | 8%     | 94%   |  |
| 3.5-5.0             | Small            | 90-128      |             | 2       | 2       | 4%     | 98%   |  |
| 5.0-7.1             | Large            | 128-180     | $\square$   |         | 0       | 0%     | 98%   |  |
| 7.1-10.1            | Large            | 180-256     |             | 1       | 1       | 2%     | 100%  |  |
| 10.1-14.3           | Small            | 256-362     |             |         | 0       | 0%     | 100%  |  |
| 14.3-20             | Small            | 362-512     |             |         | 0       | 0%     | 100%  |  |
| 20-40               | Medium           | 512-1024    | R ROOLDER 7 |         | 0       | 0%     | 100%  |  |
| 40-80               | Large            | 1024-2048   |             |         | 0       | 0%     | 100%  |  |
|                     | Bedrock          |             | BDRK        |         | 0       | 0%     | 100%  |  |
|                     |                  |             |             | TOTALS> | 50      | 100%   | 100%  |  |



\*Year 1 data not available.

### APPENDIX C

## PLAN VIEW SHEETS



|   |       | NORTHING    | EASTING      | ELEVATION |
|---|-------|-------------|--------------|-----------|
| 1 | LEFT  | 763207.9909 | 1898757.6600 | 559.5123  |
| 1 | RIGHT | 763307.6006 | 1898763.3135 | 561.2426  |
| 2 | LEFT  | 763173.9086 | 1898696.2853 | 559.6677  |
| 2 | RIGHT | 763272.9699 | 1898683.3090 | 560.9459  |
| 3 | LEFT  | 763020.3192 | 1898239.8346 | 555.1650  |
| 3 | RIGHT | 762987.3139 | 1898172.4883 | 552.3188  |
| 4 | LEFT  | 762973.7664 | 1898215.1833 | 553.9285  |
| 4 | RIGHT | 762992.5881 | 1898174.6097 | 552.4553  |

| PROJ •: | COUNTY:                                                             |
|---------|---------------------------------------------------------------------|
|         | UT TO SOUTH FORK CREEK<br>MONITORING PLAN VIEW<br>MONITORING YEAR 3 |
|         |                                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                       | Etom                                      |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                          | POSTO                                                                                                                                                 |                                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                          | Line iso                                                                                                                                              | CROSS SECTION 5                           |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                       |                                           |                 |
| CROSS SECTION STAKING           NORTHING         EASTING         ELEVATION           XSC 5 LEFT         762506.3940         1896989.2978         536.3557           XSC 5 RIGHT         762554.5778         1897015.7169         535.6841           XSC 6 LEFT         762542.1251         1896774.9056         534.7193           XSC 6 RIGHT         762601.0118         1896785.7229         534.8382 | VEGETATION PLOT STA           NORTHING         I           VP 5         762567.3856         189           VP 6         762598.0885         1896       | KING<br>EASTING<br>7350.9904<br>5773.5260 |                 |
| LE<br>                                                                                                                                                                                                                                                                                                                                                                                                   | EGEND<br>PROJECT ELEMENTS                                                                                                                             | STRUCTURE TYPES                           | UT TO<br>MONITO |
| THALWEG 2008<br>BANKFULL 2008<br>BANKFULL 2008                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>CONTROL POINT/BENCHMARK (TBM)</li> <li>VEGETATION PLOT WITH<br/>PHOTO CORNER (ARROW)</li> <li>CROSS-SECTIONS</li> <li>PHOTO POINT</li> </ul> | ROCK J-HOOK<br>CROSS VANE VANE            | Ec              |

EASEMENT BOUNDARY

Enhand

ROCK VANE

ROOTWAD


| VEGET       |             |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |
|-------------|-------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| A Same      | NORTHING    | EASTING      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |
| VP 7        | 762674.9106 | 1896339.2510 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |
| VP 8        | 762742.2149 | 1896340.4260 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VEC5/4100       | MOSS SECTION 10  |
| VP 9        | 762801.1467 | 1896208.0430 | Sec. Sec. L |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |
| VP 10       | 762877.3945 | 1896198.1740 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XX              | - E.             |
| VP 11       | 763153.0694 | 1896184.2180 |             | A REAL PROPERTY OF A REAL PROPER | 1-              | 4                |
| VP 12       | 763238.0123 | 1896158.1680 | Sec. 1      | and the second sec                                                                                                                                                                                                                                             |                 |                  |
|             | CROSS SECT  | ION STAKING  | a mail of   | and the form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                  |
| 100 C       | NORTHING    | EASTING      | ELEVATION   | and a state of the second  | A Barren P      | N TOSPAN YEAR    |
| XSC 7 LEFT  | 762676.4689 | 1896334.1190 | 530.1153    | AND THE REAL PROPERTY OF THE PARTY OF THE PA |                 | EL. #526.38.9110 |
| XSC 7 RIGHT | 762694.7446 | 1896380.6050 | 531,6672    | UT TO SOUTH FORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the set     |                  |
| XSC 8 LEFT  | 762771.9483 | 1896242.1450 | 531.2732    | MONITORING REACH 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MARCH R         |                  |
| XSC 8 RIGHT | 762774.2250 | 1896292.2990 | 531.0435    | a contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A LONG          |                  |
| 1000        |             | - 44 1 7     | 12 2 2 2    | Constant of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | St. M. Martin   |                  |
|             |             |              |             | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 19.90            |
| STREAM      | FEATURES    |              |             | PROJECT ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STRUCTURE TYPES | Setter.          |
|             | т           | HALWEG 2008  |             | CONTROL POINT/BENCHMARK (TBM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and a second    |                  |
|             | В           | ANKFULL 2008 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |
|             |             |              |             | PHOTO CORNER (ARROW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es les          |                  |





\_\_\_\_



\_\_\_\_





ROCK CROSS VANE

ROOTWAD



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | PROJECT REFERENCE NO. | SHEET NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HPI                  | 435                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FERING GROUP         | PROJECT ENG           | INEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1025 WADE AVENUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TEL: 919-789-997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>7 FAX: 789-9591 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and the second se |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                 | 14 A 1993             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 A 10 A 10 A 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                  | 10000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 1000 C                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 100 C 100 C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sec. Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CROSS SECTION        | 8                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DE SECTION I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                    | • •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| × *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                    |                       | 1. Sec. 1. Sec |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 1 -5                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 5.1E                  | 200 Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                 | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | POWYT                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 200 10                | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UT                   | TO SOUTH FORK         | CREEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M                    | ONITORING PLAN        | VIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | MUNITURING YEA        | NR 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PROJ #:              | COUNTY;               | AMANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | AL                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 435                 |
|---------------------|
| PREPARED BY:<br>IPJ |
| CHECKED BY:         |

| CKED | BY: |
|------|-----|
|      | PDB |

DATE: 2/03/09





# UT TO SOUTH FORK

















|                                                      | PROJECT REFERENCE NO. | SHEET NO. |
|------------------------------------------------------|-----------------------|-----------|
|                                                      | 435                   | 6         |
|                                                      | PROJECT ENGIN         | EER       |
| ENGINEERING GROUP                                    |                       |           |
| 1025 WADE AVENUE                                     |                       |           |
| RALEIGH, NC 27605<br>TEL: 919-789-9977 FAX: 789-9591 |                       |           |
|                                                      |                       |           |
| 10 0 30                                              |                       |           |
|                                                      |                       |           |
|                                                      |                       |           |
| SCALE                                                |                       |           |
|                                                      |                       |           |





| UT TO SO<br>Stream Mon | OUTH FORK CREEK<br>NITORING - YEAR 3 |
|------------------------|--------------------------------------|
| PROJ #:                | COUNTY:                              |
| 435                    | ALAMANCE                             |
| PREPARED BY:           |                                      |
| TP.I                   |                                      |

PREPARED BY: IPJ CHECKED BY: PDB

LOCATION;

DATE:

2/10/09





| ~       |                     | O SOUTH FORK CREEK<br>MONITORING - YEAR 3 |
|---------|---------------------|-------------------------------------------|
|         | PROJ #:<br>435      | COUNTY:<br>ALAMANCE                       |
| osystem | PREPARED BY:<br>IPJ |                                           |
| PROGRAM | CHECKED BY:<br>PDB  | DATE:<br>2/10/09                          |







| υτ το ε    | SOUTH FORK | CRE | EK   |   |
|------------|------------|-----|------|---|
| VEGETATION | ASSESSMENT | • - | YEAR | 3 |
| PROJ #:    | COUNTY:    |     |      |   |

PDB

DATE: 6/02/08

ALAMANCE



| VEGETATION | PLOT        | STAKING | (РНОТО | CORNER)  |
|------------|-------------|---------|--------|----------|
|            | N           | ORTHING | EA     | STING    |
| VP 2       | 763052.5696 |         | 18983  | 360,6060 |
| VP 3       | 763120.5065 |         | 1898   | 242.6220 |

\*THE HERBACEOUS UNDERSTORY COMPONENT OF THE VEGETATIVE COMMUNITY IS DOMINATED BY FESTUCA SPP. ALONG THE LENGTH OF SR1.

|                      | LEGEND                                  |                |                                |
|----------------------|-----------------------------------------|----------------|--------------------------------|
| THALWEG 2008         |                                         | TYPES          |                                |
| BANKFULL 2008        | 65550                                   | and the second | BARF BENCH/BANK                |
| PHOTO POINT          | Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec. | C<br>C<br>C    | BARE FLOODPLAIN                |
| VEGETATION PLOT      | ROCK                                    | J-HOOK         | ROSA MULTIFLORA PRESENT        |
| WITH PHOTO CORNER    | CIUSS VHIL                              |                | MICROSTEGIUM VIRMINEUM PRESENT |
|                      |                                         | 0255g          | LIGUSTRUM SINENSE PRESENT      |
| SUCCESS REQUIREMENTS | ROOTWAD                                 | ROCK<br>VANE   | AILANTHUS ALTISSIMA PRESENT    |







| VEGETAT       | TION | ASSESSMENT - YEAR 3 |  |  |
|---------------|------|---------------------|--|--|
| PROJ #:       |      | COUNTY:             |  |  |
| 435           |      | ALAMANCE            |  |  |
| MONITORED BY: | IPJ  |                     |  |  |
| CHECKED BY:   | PDB  | DATE:<br>6/02/08    |  |  |

| VEGETATION PLOT STAKING |                  |              |  |  |
|-------------------------|------------------|--------------|--|--|
|                         | NORTHING EASTING |              |  |  |
| VP 4                    | 762999.6823      | 1898058.6040 |  |  |

| PROJECT REFERENCE NO. | SHEET NO.                                     |
|-----------------------|-----------------------------------------------|
| 435                   | 3                                             |
| PROJECT ENGIN         | EER                                           |
|                       |                                               |
|                       |                                               |
|                       |                                               |
|                       |                                               |
|                       |                                               |
|                       |                                               |
|                       |                                               |
|                       |                                               |
|                       | PROJECT REPERENCE NO.<br>435<br>PROJECT ENGIN |





| VEGETA        | TION | ASSESSMENT - YEAR 3 |
|---------------|------|---------------------|
| PROJ #:       |      | COUNTY:             |
| 435           |      | ALAMANCE            |
| MONITORED BY: | IPJ  |                     |
| CHECKED BY:   | PDB  | DATE:<br>6/02/08    |

UT TO SOUTH FORK CREEK

LOCATION:





|                                                                          | PROJECT REFERENCE NO. | SHEET NO. |
|--------------------------------------------------------------------------|-----------------------|-----------|
|                                                                          | 435                   | 6         |
|                                                                          | PROJECT ENGIN         | EER       |
| ENGINEERING GROUP                                                        |                       |           |
| 1025 WADE AVENUE<br>Raleigh, NC 27605<br>Tel: 919-789-9977 FAX: 789-9591 |                       |           |
|                                                                          |                       |           |
| 10 0 30                                                                  |                       |           |
|                                                                          |                       |           |
| SCALE                                                                    |                       |           |
|                                                                          |                       |           |

|         | LOCATION:                                                |     |                  |  |
|---------|----------------------------------------------------------|-----|------------------|--|
|         | UT TO SOUTH FORK CREEK<br>VEGETATION ASSESSMENT - YEAR 3 |     |                  |  |
|         | PROJ #:<br>435                                           | (   |                  |  |
| osystem | MONITORED BY:                                            | IPJ |                  |  |
| PROGRAM | CHECKED BY:                                              | PDB | DATE:<br>6/02/08 |  |



| VEGETA         | TION | ASSESSMENT - YEAR 3 |
|----------------|------|---------------------|
| PROJ #:<br>435 |      | COUNTY:<br>ALAMANCE |
| MONITORED BY:  | IPJ  |                     |
| CHECKED BY:    |      | DATE:               |

| VEGETATION PLOT STAKING |                                                       |  |  |
|-------------------------|-------------------------------------------------------|--|--|
| NORTHING                | EASTING                                               |  |  |
| 762674.9106             | 1896339.2510                                          |  |  |
| 762742.2149             | 1896340.4260                                          |  |  |
| 762801.1467             | 1896208.0430                                          |  |  |
|                         | NORTHING<br>762674.9106<br>762742.2149<br>762801.1467 |  |  |



| CODDI                                                                    | PROJECT REFERENCE NO. | SHEET NO. |
|--------------------------------------------------------------------------|-----------------------|-----------|
|                                                                          | 435                   | 8         |
|                                                                          | PROJECT ENGINI        | EER       |
| ENGINEERING GROUP                                                        |                       |           |
| 1025 WADE AVENUE<br>RALEIGH, NC 27605<br>TEL: 919-789-9977 FAX: 789-9591 |                       |           |
| 10 0 30                                                                  |                       |           |
| SCALE                                                                    |                       |           |

## UT TO SOUTH FORK

| VEGETATI |           |         |      | Ű |
|----------|-----------|---------|------|---|
| VEGETATI |           | MENT -  | VEAR | 3 |
| UT T     | O SOUTH F | ORK CRE | EK   |   |
|          |           |         |      |   |

COUNTY:

PDB

DATE: 6/02/08

